Computer Engineering and Applications Journal (ComEngApp, Universitas Sriwijaya)
Not a member yet
    215 research outputs found

    A Hybrid of Fuzzy C-Means for the segmentation in CT scan and X-ray images for screening the COVID-19 patients

    Get PDF
    In this paper, using CT scan and X-ray images, we present a hybrid approach, based on combining fuzzy C-means with k-means clustering, to evaluate and determine pneumonia infection caused by the coronavirus disease (COVID-19). To achieve this objective, we introduce a hybrid method that combines fuzzy C-means clustering with K-means clustering. This hybrid approach is designed to effectively segment object boundaries within medical images, enabling the precise identification of pneumonia-related features. In addition to our hybrid method, we compare its performance with two other segmentation approaches: the Expectation Maximization (EM) algorithm and 2D Entropy segmentation. Which, the method we propose uses a comparison between the performances of the based on a database of medical imaging test. Experimental results showed that the proposed approach outperforms, it was found that the hybrid fuzzy C-means algorithm segmentation images methods give better performance in terms of accuracy, precision, and F-measure, which is effective in boundaries segmentation. Comparative results of the accuracy and image quality index demonstrate the robustness of AI. It also helps to improve work efficiency with accurate analysis of COVID-19 infection on CT scan and X-rays. In addition, the approach helps radiologists make clinical decisions for diagnosis, follow-up, and prognosis

    Analysis and Implementation of Blowfish and LSB Algorithm on RGB Images using SHA-512

    Get PDF
    The growth of the internet globally keeps increasing as time goes. There's a big amount of data type saved there too. Those data need to be secured so anyone who doesn't have the right to access them can access it. The purpose of this article is to secure text information into image media using the Blowfish method for encrypting text information and securing it using the Hash function SHA-512 and then embedded it in image media using the Least Significant Bit (LSB) method. The result of implementing those methods using image media sized 138Kb and 39.85Kb with plaintext measuring 27 and 85 characters shows that integrity data is secured with SHA-512 method. The test result using PSNR method to get the score of image quality after embedding information to the image shows that the average number of PSNR’s score is 70,74 dB which means the quality is good and has less difference from the original image

    Optimization of Distributed RSA Encryption and Decription Processing Using Process Scheduling Method In Single Board Computer Cluster Architecture (SBC)

    Get PDF
    Data security is still a major issue regarding the need for data confidentiality. The encryption process using the RSA algorithm is still the most popular method used in securing data because the complexity of the mathematical equations used in this algorithm makes it difficult to hack. However, the complexity of the RSA algorithm is still a major problem that hinders its application in a more complex application. Optimization is needed in the processing of this RSA algorithm, one of which is by running it on a distributed system. In this paper, we propose an approach with a FIFO process scheduling algorithm that runs on a single board computer cluster. The test results show that the allocation of resources in a system that uses a FIFO process scheduling algorithm is more efficient and shows a decrease in the overall processing time of RSA encryption

    Point of Interest (POI) Recommendation System using Implicit Feedback Based on K-Means+ Clustering and User-Based Collaborative Filtering

    Get PDF
    Recommendation system always involves huge volumes of data, therefore it causes the scalability issues that do not only increase the processing time but also reduce the accuracy. In addition, the type of data used also greatly affects the result of the recommendations. In the recommendation system, there are two common types of data namely implicit (binary) rating and explicit (scalar) rating. Binary rating produces lower accuracy when it is not handled with the properly. Thus, optimized K-Means+ clustering and user-based collaborative filtering are proposed in this research. The K-Means clustering is optimized by selecting the K value using the Davies-Bouldin Index (DBI) method. The experimental result shows that the optimization of the K values produces better clustering than Elbow Method. The K-Means+ and User-Based Collaborative Filtering (UBCF) produce precision of 8.6% and f-measure of 7.2%, respectively. The proposed method was compared to DBSCAN algorithm with UBCF, and had better accuracy of 1% increase in precision value. This result proves that K-Means+ with UBCF can handle implicit feedback datasets and improve precision

    Video Annomaly Classification Using Convolutional Neural Network

    No full text
    The use of surveillance videos is increasingly popular in city monitoring systems. Generally, the analysis process in surveillance videos still relies on conventional methods. This method requires professional personnel to constantly monitor and analyze videos to identify abnormal events. Consequently, the conventional approach is time-consuming, resource-intensive, and costly. Therefore, a system is needed to automatically detect video anomalies, reducing the massive human resource utilization for video monitoring. This research employs deep learning methods to classify anomalies in videos. The video anomaly detection process involves transforming the video into image format by extracting each frame present in the video. Subsequently, a Convolutional Neural Network (CNN) model is utilized to classify anomalous events within the video. Testing results using the CNN architectures DenseNet121 and EfficientNet V2 yielded performance accuracies of 87% and 75%, respectively. The testing results indicate that the DenseNet121 architecture outperforms the EfficientNetV2 architecture in terms of performance

    Comparison of Naive Bayes and Support Vector Machine (SVM) Algorithms Regarding The Popularity of Presidential Candidates In The Upcoming 2024 Presidential Election

    Get PDF
    This study aims to compare the effectiveness of two classification algorithms, Naive Bayes and Support Vector Machine (SVM), in analyzing the popularity of presidential candidates for the 2024 Presidential Election (Pilpres). The popularity of presidential candidates plays a crucial role in campaign strategies and political decision-making in the modern political era. This research utilizes data from social media, encompassing public sentiment towards presidential candidates and related political issues. The research results indicate that SVM achieves an accuracy rate of 97%, while Naive Bayes achieves 95%, demonstrating the superiority of SVM in predicting the popularity of presidential candidates. In conclusion, the selection of the appropriate algorithm for analyzing complex political data has a significant impact, and the high accuracy rates of both algorithms provide valuable guidance for political decision-makers and campaign teams in preparation for the upcoming 2024 Pilpres

    Development Of A Cloud-Based Condition Monitoring Scheme For Distribution Transformer Protection

    Get PDF
    Distribution transformers are a necessity to ensure a reliable power supply to consumers and their inability to function properly or even breakdown should be avoided due to the high cost of replacing them. Distribution transformers are large in numbers and randomly distributed in cities and there is a need to accurately monitor their daily/hourly performance. To achieve this, real-time monitoring of the transformer’s health status is proposed rather than the use of the traditional approach involving physical inspection and testing which is slow, tedious and time-consuming. This paper presents a cloud-based monitoring scheme applied to a prototype distribution transformer. A 10kVA, 0.415 kV prototype distribution transformer has been acquired and connected to three residences for data acquisition. A data acquisition system has been developed to monitor and record the parameters of the prototype transformer for 14 days.  The parameters, monitored in real-time include load current, phase voltage, transformer oil level, ambient temperature and oil temperature. The acquired real-time data of the transformer is validated with the standard measuring instrument. An algorithm was developed to transmit and log the data to ThinkSpeak cloud server via node MCU (ESP 8266). Results obtained in this study, which can be visualized via the graphical user interface of ThinkSpeak, indicate that the proposed scheme can acquire vital data from the distribution transformers and transmit the information to the monitoring centre

    Segmentation of Skin Lesions Using Convolutional Neural Networks

    No full text
    Skin lesions play a crucial role as the initial clinical symptoms of diseases such as chickenpox and melanoma. By employing digital image processing techniques for skin cancer detection, it becomes feasible to diagnose these conditions without the need for physical contact with the skin. However, the automatic analysis of dermoscopy images, which exhibit characteristics like residue (hair and ruler markers), indistinct borders, varying contrast, and variations in shape and color, poses significant challenges. To overcome these difficulties, effective hair removal through segmentation has been explored extensively in the literature. In this study, we present a skin lesion segmentation system developed using the Convolutional Neural Networks (CNNs) method with the U-Net architecture. The model was constructed and evaluated using the HAM10000 Dataset. The results achieved by the best-performing model were outstanding, with a Pixel Accuracy, Intersection over Union (IoU), and F1 Score of 95.89%, 90.37%, and 92.54%, respectivel

    Dermatitis Atopic and Psoriasis Skin Disease Classification by using Convolutional Neural Network

    Get PDF
    Skin is the one of the body parts that play a large role in human physical body. There are so many functions of the skin such as offering protection against fungal infection, bacteria, allergy, viruses and controls the temperature of the body. But, the reported shown that the skin disease is the most common disease in humans among all age groups and a significant root of infection. The diagnosis of skin diseases involves several tests. Due to this, the diagnosis process is seen to be intensely laborious, time-consuming and requires an extensive understanding aspecially for the skin disease that have similar symptoms. Two skin diseases that have similar symptoms and most misdiagnosed are atopic dermatitis and psoriasis. Convolutional Neural Network for image processing and classifying have been developed for more accurate classification of skin diseases with different architectures. However, the accuracy in determining skin lesions using CNNs is on the average level. The factors that affect the accuracy result of a CNN is the depth where gradients vanished as the network goes deeper. Another factor is the variance in the training set which means the need of the large size of training set. Hence, in this study we tried 10 CNN architecture to get the best result for classifying dermatitis atopic and psoriasis. These are VGG 16, VGG 19, ResNet 50, ResNet 101, MobileNet, MobileNet V2, DenseNet 121, DenseNet 201, Inception and Xception. Experimental result shown that the inception V3 architecture give the best result with accuracy for data testing 84%, accuracy for unseen data 82% and confusion matrix with True positive obtained is 248, True Negative is 61, False positive is 54 and False Negative 298

    Forecasting Of Intensive Care Unit Patient Heart Rate Using Long Short-Term Memory

    Get PDF
    Cardiac arrest remains a critical concern in Intensive Care Units (ICUs), with alarmingly low survival rates. Early prediction of cardiac arrest is challenging due to the complexity of patient data and the temporal nature of ICU care. To address this challenge, we explore the use of Deep Learning (DL) models, specifically Long Short-Term Memory (LSTM), Bidirectional LSTM (BiLSTM), and Gated Recurrent Unit (GRU), for forecasting ICU patient heart rates. We utilize a dataset extracted from the MIMIC III database, which poses the typical challenges of irregular time series data and missing values. Our research encompasses a comprehensive methodology, including data preprocessing, model development, and performance evaluation. Data preprocessing involves regularizing and imputing missing values, as well as data normalization. The dataset is partitioned into training, testing, and validation sets to facilitate model training and evaluation. Fine-tuning of hyperparameters is conducted to optimize each DL architecture's performance. Our results reveal that the GRU architecture consistently outperforms LSTM and BiLSTM in predicting heart rates, achieving the lowest RMSE and MAE values. The findings underscore the potential of DL models, particularly GRU, in enhancing the early detection of cardiac events in ICU patients

    208

    full texts

    215

    metadata records
    Updated in last 30 days.
    Computer Engineering and Applications Journal (ComEngApp, Universitas Sriwijaya) is based in Indonesia
    Access Repository Dashboard
    Do you manage Open Research Online? Become a CORE Member to access insider analytics, issue reports and manage access to outputs from your repository in the CORE Repository Dashboard! 👇