1,069 research outputs found

    Molecular Studies of T Cell Recognition and Cross-Reactivity: A Dissertation

    Get PDF
    Intracellular pathogens are recognized by a specialized subset of lymphocytes known as CD8+ T cells. Pathogen recognition by CD8+ T cells occurs through binding of T cell receptors (TCR) to processed antigens in complex with major histocompatibility complex (MHC) class I proteins. TCR engagement of antigens in complex with MHC class I typically lead to cytotoxic CD8+ T cell responses, which result in pathogen clearance. Due to the large number of foreign antigens that might be encountered by any given host a diverse repertoire of TCRs must be available for immune recognition. The main source of TCR diversity is generated by somatic recombination of the TCR genes. However, it has been suggested that selection eliminates so many recombined TCR sequences, that a high degree of TCR cross-reactivity must occur for the immune system to be able to recognize a large set of foreign pathogens. The work presented in this thesis was directed towards the understanding of the molecular mechanisms of CD8+ T cell recognition and cross-reactivity. Chapter I of this thesis gives an overview of the immune system, with a focus on CD8+ T cells. Chapter II of this thesis describes the development of novel bi-specific MHC heterodimers that are specific towards cross-reactive CD8+ T cells. Classically, MHC tetramers have been used for phenotypic characterization of antigen-specific T cells. However, identification of cross-reactive T cells requires the simultaneous use of two MHC tetramers, which was found to result in MHC tetramer cross-competition. For this reason, we generated bi-specific MHC heterodimers, which would not be affected by the affinity between the component peptide-MHC complexes for TCR. We generated T cell lines, which cross-react with antigens from lymphocytic choriomeningitis virus (LCMV) and vaccinia virus (VV), to test our bi-specific MHC heterodimers. We show that the heterobifunctional cross-linking utilized to generate bi-specific MHC heterodimers does not affect specific binding onto cross-reactive CD8+ T cells. Chapter III describes a mechanism for a cross-reactive CD8+ T cell response between the disparate antigens, lymphocytic choriomeningitis virus (LCMV)-GP34 (AVYNFATM) and vaccinia virus (VV)-A11R (AIVNYANL), which share the three underlined residues. The recognition determinants for LCMV-GP34 and VV-A11R were compared by an alanine/lysine scanning approach for both epitopes. Functional analysis of the mutated peptides clearly indicates that the shared P4N residue between LCMV-GP34 and VV-A11R is an important TCR contact for the recognition of both epitopes. In addition, we determined the crystal structures of both Kb-VV-A11R and Kb-LCMV-GP34. Structural analysis revealed that the two complexes are nearly identical structural mimics, which was unexpected due to the primary sequence disparity. Together with the functional studies, our results highlight that structural similarities between different peptide-MHC complexes can mediate cross-reactive T cell responses. Chapter IV of this thesis includes additional discussion, overall conclusions and future directions. Chapter V includes the protocols and the gene constructs that were used in this work. Also included in Chapter V are results from two unrelated incomplete projects which have yielded significant findings

    Diagnostic Magnetic Resonance Imaging of Atherosclerosis in Apolipoprotein E Knockout Mouse Model Using Macrophage-Targeted Gadolinium-Containing Synthetic Lipopeptide Nanoparticles

    Get PDF
    Cardiovascular disease is the leading cause of death in Western cultures. The vast majority of cardiovascular events, including stroke and myocardial infarction, result from the rupture of vulnerable atherosclerotic plaques, which are characterized by high and active macrophage content. Current imaging modalities including magnetic resonance imaging (MRI) aim to characterize anatomic and structural features of plaques rather than their content. Previously, we reported that macrophage-targeted delivery of gadolinium (Gd)-based contrast agent (GBCA-HDL) using high density lipoproteins (HDL)-like particles significantly enhances the detection of plaques in an apolipoprotein (apo) E knockout (KO) mouse model, with an atherosclerotic wall/muscle normalized enhancement ratio (NER) of 120% achieved. These particles are comprised of lipids and synthetic peptide fragments of the major protein of HDL, apo A-I, that contain a naturally occurring modification which targets the particles to macrophages. Targeted delivery minimizes the Gd dose and thus reduces the adverse effects of Gd. The aims of the current study were to test whether varying the GBCA-HDL particle shape and composition can further enhance atherosclerotic plaque MRI and control organ clearance of these agents. We show that the optimized GBCA-HDL particles are efficiently delivered intracellularly to and uptaken by both J774 macrophages in vitro and more importantly, by intraplaque macrophages in vivo, as evidenced by NER up to 160% and higher. This suggests high diagnostic power of our GBCA-HDL particles in the detection of vulnerable atherosclerotic plaques. Further, in contrast to discoidal, spherical GBCA-HDL exhibit hepatic clearance, which could further diminish adverse renal effects of Gd. Finally, activated macrophages are reliable indicators of any inflamed tissues and are implicated in other areas of unmet clinical need such as rheumatoid arthritis, sepsis and cancer, suggesting the expanded diagnostic and prognostic use of this method

    Inhibition of Triggering Receptor Expressed on Myeloid Cells 1 Ameliorates Inflammation and Macrophage and Neutrophil Activation in Alcoholic Liver Disease in Mice

    Get PDF
    Alcoholic liver disease (ALD) is characterized by macrophage and neutrophil leukocyte recruitment and activation in the liver. Damage- and pathogen-associated molecular patterns contribute to a self-perpetuating proinflammatory state in ALD. Triggering receptor expressed on myeloid cells 1 (TREM-1) is a surface receptor that amplifies inflammation induced by toll-like receptors (TLRs) and is expressed on neutrophils and monocytes/macrophages. We hypothesized that TREM-1 signaling contributes to proinflammatory pathway activation in ALD. Using an in vivo ALD model in mice, we tested the effects of ligand-independent TREM-1 inhibitory peptides that were formulated into human high-density lipoprotein (HDL)-mimicking complexes GF9-HDL and GA/E31-HDL. As revealed in vitro, macrophages endocytosed these rationally designed complexes through scavenger receptors. A 5-week alcohol feeding with the Lieber-DeCarli diet in mice resulted in increased serum alanine aminotransferase (ALT), liver steatosis, and increased proinflammatory cytokines in the liver. TREM-1 messenger RNA (mRNA) expression was significantly increased in alcohol-fed mice, and TREM-1 inhibitors significantly reduced this increase. TREM-1 inhibition significantly attenuated alcohol-induced spleen tyrosine kinase (SYK) activation, an early event in both TLR4 and TREM-1 signaling. The TREM-1 inhibitors significantly inhibited macrophage (epidermal growth factor-like module-containing mucin-like hormone receptor-like 1 [F4/80], clusters of differentiation [CD]68) and neutrophil (lymphocyte antigen 6 complex, locus G [Ly6G] and myeloperoxidase [MPO]) markers and proinflammatory cytokines (monocyte chemoattractant protein 1 [MCP-1], tumor necrosis factor alpha [TNF-alpha], interleukin-1beta [IL-1beta], macrophage inflammatory protein 1alpha [MIP-1alpha]) at the mRNA level compared to the HDL vehicle. Administration of TREM-1 inhibitors ameliorated liver steatosis and early fibrosis markers (alpha-smooth muscle actin [alphaSMA] and procollagen1alpha [Pro-Col1alpha]) at the mRNA level in alcohol-fed mice. However, the HDL vehicle also reduced serum ALT and some cytokine protein levels in alcohol-fed mice, indicating HDL-related effects. Conclusion: HDL-delivered novel TREM-1 peptide inhibitors ameliorate early phases of inflammation and neutrophil and macrophage recruitment and activation in the liver and attenuate hepatocyte damage and liver steatosis. TREM-1 inhibition represents a promising therapeutic approach for further investigations in ALD

    Protection against Experimental Cryptococcosis following Vaccination with Glucan Particles Containing Cryptococcus Alkaline Extracts

    Get PDF
    A vaccine capable of protecting at-risk persons against infections due to Cryptococcus neoformans and Cryptococcus gattii could reduce the substantial global burden of human cryptococcosis. Vaccine development has been hampered though, by lack of knowledge as to which antigens are immunoprotective and the need for an effective vaccine delivery system. We made alkaline extracts from mutant cryptococcal strains that lacked capsule or chitosan. The extracts were then packaged into glucan particles (GPs), which are purified Saccharomyces cerevisiae cell walls composed primarily of β-1,3-glucans. Subcutaneous vaccination with the GP-based vaccines provided significant protection against subsequent pulmonary infection with highly virulent strains of C. neoformans and C. gattii. The alkaline extract derived from the acapsular strain was analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS), and the most abundant proteins were identified. Separation of the alkaline extract by size exclusion chromatography revealed fractions that conferred protection when loaded in GP-based vaccines. Robust Th1- and Th17-biased CD4(+) T cell recall responses were observed in the lungs of vaccinated and infected mice. Thus, our preclinical studies have indicated promising cryptococcal vaccine candidates in alkaline extracts delivered in GPs. Ongoing studies are directed at identifying the individual components of the extracts that confer protection and thus would be promising candidates for a human vaccine. IMPORTANCE: The encapsulated yeast Cryptococcus neoformans and its closely related sister species, Cryptococcus gattii, are major causes of morbidity and mortality, particularly in immunocompromised persons. This study reports on the preclinical development of vaccines to protect at-risk populations from cryptococcosis. Antigens were extracted from Cryptococcus by treatment with an alkaline solution. The extracted antigens were then packaged into glucan particles, which are hollow yeast cell walls composed mainly of β-glucans. The glucan particle-based vaccines elicited robust T cell immune responses and protected mice from otherwise-lethal challenge with virulent strains of C. neoformans and C. gattii. The technology used for antigen extraction and subsequent loading into the glucan particle delivery system is relatively simple and can be applied to vaccine development against other pathogens

    Phantom Cosmology with Non-minimally Coupled Real Scalar Field

    Full text link
    We find that the expansion of the universe is accelerating by analyzing the recent observation data of type \textsc{I}a supernova(SN-Ia) .It indicates that the equation of state of the dark energy might be smaller than -1,which leads to the introduction of phantom models featured by its negative kinetic energy to account for the regime of equation of state parameter w<1w<-1.In this paper the possibility of using a non-minimally coupled real scalar field as phantom to realize the equation of state parameter w<1w<-1 is discussed.The main equations which govern the evolution of the universe are obtained.Then we rewrite them with the observable quantities.Comment: 12 pages, 2 figures. Accepted for publication in Gen.Rel.Gra

    Origin of the low critical observing temperature of the quantum anomalous Hall effect in V-doped (Bi, Sb)2Te3 film

    Get PDF
    The experimental realization of the quantum anomalous Hall (QAH) effect in magnetically-doped (Bi, Sb)[subscript 2]Te[subscript 3] films stands out as a landmark of modern condensed matter physics. However, ultra-low temperatures down to few tens of mK are needed to reach the quantization of Hall resistance, which is two orders of magnitude lower than the ferromagnetic phase transition temperature of the films. Here, we systematically study the band structure of V-doped (Bi, Sb)[subscript 2]Te[subscript 3] thin films by angle-resolved photoemission spectroscopy (ARPES) and show unambiguously that the bulk valence band (BVB) maximum lies higher in energy than the surface state Dirac point. Our results demonstrate clear evidence that localization of BVB carriers plays an active role and can account for the temperature discrepancy

    A Description of Quasar Variability Measured Using Repeated SDSS and POSS Imaging

    Get PDF
    We provide a quantitative description and statistical interpretation of the optical continuum variability of quasars. The Sloan Digital Sky Survey (SDSS) has obtained repeated imaging in five UV-to-IR photometric bands for 33,881 spectroscopically confirmed quasars. About 10,000 quasars have an average of 60 observations in each band obtained over a decade along Stripe 82 (S82), whereas the remaining ~25,000 have 2-3 observations due to scan overlaps. The observed time lags span the range from a day to almost 10 years, and constrain quasar variability at rest-frame time lags of up to 4 years, and at rest-frame wavelengths from 1000A to 6000A. We publicly release a user-friendly catalog of quasars from the SDSS Data Release 7 that have been observed at least twice in SDSS or once in both SDSS and the Palomar Observatory Sky Survey, and we use it to analyze the ensemble properties of quasar variability. Based on a damped random walk (DRW) model defined by a characteristic time scale and an asymptotic variability amplitude that scale with the luminosity, black hole mass, and rest wavelength for individual quasars calibrated in S82, we can fully explain the ensemble variability statistics of the non-S82 quasars such as the exponential distribution of large magnitude changes. All available data are consistent with the DRW model as a viable description of the optical continuum variability of quasars on time scales of ~5-2000 days in the rest frame. We use these models to predict the incidence of quasar contamination in transient surveys such as those from PTF and LSST.Comment: 33 pages, 19 figures, replaced with accepted version. Catalog is available at http://www.astro.washington.edu/users/ivezic/macleod/qso_dr7

    The Sloan Digital Sky Survey Reverberation Mapping Project: Technical Overview

    Full text link
    The Sloan Digital Sky Survey Reverberation Mapping project (SDSS-RM) is a dedicated multi-object RM experiment that has spectroscopically monitored a sample of 849 broad-line quasars in a single 7 deg2^2 field with the SDSS-III BOSS spectrograph. The RM quasar sample is flux-limited to i_psf=21.7 mag, and covers a redshift range of 0.1<z<4.5. Optical spectroscopy was performed during 2014 Jan-Jul dark/grey time, with an average cadence of ~4 days, totaling more than 30 epochs. Supporting photometric monitoring in the g and i bands was conducted at multiple facilities including the CFHT and the Steward Observatory Bok telescopes in 2014, with a cadence of ~2 days and covering all lunar phases. The RM field (RA, DEC=14:14:49.00, +53:05:00.0) lies within the CFHT-LS W3 field, and coincides with the Pan-STARRS 1 (PS1) Medium Deep Field MD07, with three prior years of multi-band PS1 light curves. The SDSS-RM 6-month baseline program aims to detect time lags between the quasar continuum and broad line region (BLR) variability on timescales of up to several months (in the observed frame) for ~10% of the sample, and to anchor the time baseline for continued monitoring in the future to detect lags on longer timescales and at higher redshift. SDSS-RM is the first major program to systematically explore the potential of RM for broad-line quasars at z>0.3, and will investigate the prospects of RM with all major broad lines covered in optical spectroscopy. SDSS-RM will provide guidance on future multi-object RM campaigns on larger scales, and is aiming to deliver more than tens of BLR lag detections for a homogeneous sample of quasars. We describe the motivation, design and implementation of this program, and outline the science impact expected from the resulting data for RM and general quasar science.Comment: 25 pages, submitted to ApJS; project website at http://www.sdssrm.or

    The Sloan Digital Sky Survey Reverberation Mapping Project: First broad-line Hβ and Mg II lags at z ≳ 0.3 from six-month spectroscopy

    Get PDF
    Support for the work of Y.S. was provided by NASA through Hubble Fellowship grant number HST-HF-51314, awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. K.H. acknowledges support from UK Science and Technology Facilities Council (STFC) grant ST/M001296/1. C.J.G. and W.N.B. acknowledge support from NSF grant AST-1517113 and the V.M. Willaman Endowment. B.M.P. is grateful for support from the National Science Foundation through grant AST-1008882. K.D.D. is supported by an NSF AAPF fellowship awarded under NSF grant AST-1302093. J.R.T. acknowledges support from NASA through Hubble Fellowship grant HST-HF-51330 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA under contract NAS 5-26555. M.S. acknowledges support from the China Scholarship Council (No. [2013]3009). L.C.H. is supported by the Chinese Academy of Science through grant No. XDB09030102 (Emergence of Cosmological Structures) from the strategic Priority Research Program, and from the National Natural Science Foundation of China through grant No. 11473002. L.J. acknowledges the support from a 985 project at Peking University. Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science.Reverberation mapping (RM) measurements of broad-line region (BLR) lags in z > 0.3 quasars are important for directly measuring black hole masses in these distant objects, but so far there have been limited attempts and success given the practical difficulties of RM in this regime. Here we report preliminary results of 15 BLR lag measurements from the Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project, a dedicated RM program with multi-object spectroscopy designed for RM over a wide redshift range. The lags are based on the 2014 spectroscopic light curves alone (32 epochs over six months) and focus on the Hβ and Mg II broad lines in the 100 lowest-redshift (z 0.3 is not yet possible owing to the limitations in our current sample. Our results demonstrate the general feasibility and potential of multi-object RM for z > 0.3 quasars.Publisher PDFPeer reviewe

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
    corecore