102 research outputs found

    The ICR639 CPG NGS validation series: A resource to assess analytical sensitivity of cancer predisposition gene testing [version 1; referees: 2 approved]

    Get PDF
    The analytical sensitivity of a next generation sequencing (NGS) test reflects the ability of the test to detect real sequence variation. The evaluation of analytical sensitivity relies on the availability of gold-standard, validated, benchmarking datasets. For NGS analysis the availability of suitable datasets has been limited. Most laboratories undertake small scale evaluations using in-house data, and/or rely on in silico generated datasets to evaluate the performance of NGS variant detection pipelines. Cancer predisposition genes (CPGs), such as BRCA1 and BRCA2, are amongst the most widely tested genes in clinical practice today. Hundreds of providers across the world are now offering CPG testing using NGS methods. Validating and comparing the analytical sensitivity of CPG tests has proved difficult, due to the absence of comprehensive, orthogonally validated, benchmarking datasets of CPG pathogenic variants. To address this we present the ICR639 CPG NGS validation series. This dataset comprises data from 639 individuals. Each individual has sequencing data generated using the TruSight Cancer Panel (TSCP), a targeted NGS assay for the analysis of CPGs, together with orthogonally generated data showing the presence of at least one CPG pathogenic variant per individual. The set consists of 645 pathogenic variants in total. There is strong representation of the most challenging types of variants to detect, with 339 indels, including 16 complex indels and 24 with length greater than five base pairs and 74 exon copy number variations (CNVs) including 23 single exon CNVs. The series includes pathogenic variants in 31 CPGs, including 502 pathogenic variants in BRCA1 or BRCA2, making this an important comprehensive validation dataset for providers of BRCA1 and BRCA2 NGS testing. We have deposited the TSCP FASTQ files of the ICR639 series in the European Genome-phenome Archive (EGA) under accession number EGAD00001004134

    Development of SNP markers present in expressed genes of the plant-pathogen interaction: Theobroma cacao - Moniliophtora perniciosa

    Get PDF
    We report the detection, validation and analysis of SNPs in the plant-pathogen interaction between cacao and Moniliophthora perniciosa ESTs using resequencing. This analysis in 73 EST sequences allowed the identification of 185 SNPs, 57% of them corresponding to transversion, 29% to transition and 14% to indels. The ESTs containing SNPs were classified into 14 main functional categories. After validation, 91 SNPs were confirmed, categorized and the parameters of nucleotide diversity and haplotype were calculated. Haplotype-based gene diversity and polymorphic information content (PIC) ranged from 0.559 to 0.56 and 0.115 to 0.12; respectively. Also, it was the advantage when considering haplotypes structure for each locus in place of single SNPs. Most of the gene fragments had a major haplotype combined to a series of low frequency haplotypes. Thus, the re-sequencing approach proved to be a valuable resource to identify useful SNPs for wide genetic applications. Furthermore, the cacao genome sequence availability allow a positional selection of DNA fragments to be re-sequenced enhancing the usefulness of the discovered SNPs. These results indicate the potential use of SNPs markers to identify allelic status of cacao resistance genes through marker-assisted selection to support the development of promising genotypes with high resistance to witch's broom disease. (Résumé d'auteur

    Variants in CHEK2 other than 1100delC do not make a major contribution to breast cancer susceptibility

    Get PDF
    We recently reported that a sequence variant in the cell-cycle-checkpoint kinase CHEK2 (CHEK2 1100delC) is a low-penetrance breast cancer-susceptibility allele in noncarriers of BRCA1 or BRCA2 mutations. To investigate whether other CHEK2 variants confer susceptibility to breast cancer, we screened the full CHEK2 coding sequence in BRCA1/2-negative breast cancer cases from 89 pedigrees with three or more cases of breast cancer. We identified one novel germline variant, R117G, in two separate families. To evaluate the possible association of R117G and two germline variants repo

    EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 96 (FGE.96): Consideration of 88 flavouring substances considered by EFSA for which EU production volumes / anticipated production volumes have been submitted on request by DG SANCO. Addendum to FGE. 51, 52, 53, 54, 56, 58, 61, 62, 63, 64, 68, 69, 70, 71, 73, 76, 77, 79, 80, 83, 84, 85 and 87

    Get PDF
    Overgrowth disorders are a heterogeneous group of conditions characterized by increased growth parameters and other variable clinical features such as intellectual disability and facial dysmorphism1. To identify new causes of human overgrowth, we performed exome sequencing in ten proband-parent trios and detected two de novo DNMT3A mutations. We identified 11 additional de novo mutations by sequencing DNMT3A in a further 142 individuals with overgrowth. The mutations alter residues in functional DNMT3A domains, and protein modeling suggests that they interfere with domain-domain interactions and histone binding. Similar mutations were not present in 1,000 UK population controls (13/152 cases versus 0/1,000 controls; P < 0.0001). Mutation carriers had a distinctive facial appearance, intellectual disability and greater height. DNMT3A encodes a DNA methyltransferase essential for establishing methylation during embryogenesis and is commonly somatically mutated in acute myeloid leukemia2, 3, 4. Thus, DNMT3A joins an emerging group of epigenetic DNA- and histone-modifying genes associated with both developmental growth disorders and hematological malignancie

    Characteristics and outcomes of neonatal SARS-CoV-2 infection in the UK: a prospective national cohort study using active surveillance.

    Get PDF
    BACKGROUND: Babies differ from older children with regard to their exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, data describing the effect of SARS-CoV-2 in this group are scarce, and guidance is variable. We aimed to describe the incidence, characteristics, transmission, and outcomes of SARS-CoV-2 infection in neonates who received inpatient hospital care in the UK. METHODS: We carried out a prospective UK population-based cohort study of babies with confirmed SARS-CoV-2 infection in the first 28 days of life who received inpatient care between March 1 and April 30, 2020. Infected babies were identified through active national surveillance via the British Paediatric Surveillance Unit, with linkage to national testing, paediatric intensive care audit, and obstetric surveillance data. Outcomes included incidence (per 10 000 livebirths) of confirmed SARS-CoV-2 infection and severe disease, proportions of babies with suspected vertically and nosocomially acquired infection, and clinical outcomes. FINDINGS: We identified 66 babies with confirmed SARS-CoV-2 infection (incidence 5·6 [95% CI 4·3-7·1] per 10 000 livebirths), of whom 28 (42%) had severe neonatal SARS-CoV-2 infection (incidence 2·4 [1·6-3·4] per 10 000 livebirths). 16 (24%) of these babies were born preterm. 36 (55%) babies were from white ethnic groups (SARS-CoV-2 infection incidence 4·6 [3·2-6·4] per 10 000 livebirths), 14 (21%) were from Asian ethnic groups (15·2 [8·3-25·5] per 10 000 livebirths), eight (12%) were from Black ethnic groups (18·0 [7·8-35·5] per 10 000 livebirths), and seven (11%) were from mixed or other ethnic groups (5·6 [2·2-11·5] per 10 000 livebirths). 17 (26%) babies with confirmed infection were born to mothers with known perinatal SARS-CoV-2 infection, two (3%) were considered to have possible vertically acquired infection (SARS-CoV-2-positive sample within 12 h of birth where the mother was also positive). Eight (12%) babies had suspected nosocomially acquired infection. As of July 28, 2020, 58 (88%) babies had been discharged home, seven (11%) were still admitted, and one (2%) had died of a cause unrelated to SARS-CoV-2 infection. INTERPRETATION: Neonatal SARS-CoV-2 infection is uncommon in babies admitted to hospital. Infection with neonatal admission following birth to a mother with perinatal SARS-CoV-2 infection was unlikely, and possible vertical transmission rare, supporting international guidance to avoid separation of mother and baby. The high proportion of babies from Black, Asian, or minority ethnic groups requires investigation. FUNDING: UK National Institute for Health Research Policy Research Programme

    Exploring the link between MORF4L1 and risk of breast cancer.

    Get PDF
    INTRODUCTION: Proteins encoded by Fanconi anemia (FA) and/or breast cancer (BrCa) susceptibility genes cooperate in a common DNA damage repair signaling pathway. To gain deeper insight into this pathway and its influence on cancer risk, we searched for novel components through protein physical interaction screens. METHODS: Protein physical interactions were screened using the yeast two-hybrid system. Co-affinity purifications and endogenous co-immunoprecipitation assays were performed to corroborate interactions. Biochemical and functional assays in human, mouse and Caenorhabditis elegans models were carried out to characterize pathway components. Thirteen FANCD2-monoubiquitinylation-positive FA cell lines excluded for genetic defects in the downstream pathway components and 300 familial BrCa patients negative for BRCA1/2 mutations were analyzed for genetic mutations. Common genetic variants were genotyped in 9,573 BRCA1/2 mutation carriers for associations with BrCa risk. RESULTS: A previously identified co-purifying protein with PALB2 was identified, MRG15 (MORF4L1 gene). Results in human, mouse and C. elegans models delineate molecular and functional relationships with BRCA2, PALB2, RAD51 and RPA1 that suggest a role for MRG15 in the repair of DNA double-strand breaks. Mrg15-deficient murine embryonic fibroblasts showed moderate sensitivity to γ-irradiation relative to controls and reduced formation of Rad51 nuclear foci. Examination of mutants of MRG15 and BRCA2 C. elegans orthologs revealed phenocopy by accumulation of RPA-1 (human RPA1) nuclear foci and aberrant chromosomal compactions in meiotic cells. However, no alterations or mutations were identified for MRG15/MORF4L1 in unclassified FA patients and BrCa familial cases. Finally, no significant associations between common MORF4L1 variants and BrCa risk for BRCA1 or BRCA2 mutation carriers were identified: rs7164529, Ptrend = 0.45 and 0.05, P2df = 0.51 and 0.14, respectively; and rs10519219, Ptrend = 0.92 and 0.72, P2df = 0.76 and 0.07, respectively. CONCLUSIONS: While the present study expands on the role of MRG15 in the control of genomic stability, weak associations cannot be ruled out for potential low-penetrance variants at MORF4L1 and BrCa risk among BRCA2 mutation carriers.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A

    Get PDF
    The major histocompatibility complex (MHC) on chromosome 6 is associated with susceptibility to more common diseases than any other region of the human genome, including almost all disorders classified as autoimmune. In type 1 diabetes the major genetic susceptibility determinants have been mapped to the MHC class II genes HLA-DQB1 and HLA-DRB1 (refs 1-3), but these genes cannot completely explain the association between type 1 diabetes and the MHC region. Owing to the region's extreme gene density, the multiplicity of disease-associated alleles, strong associations between alleles, limited genotyping capability, and inadequate statistical approaches and sample sizes, which, and how many, loci within the MHC determine susceptibility remains unclear. Here, in several large type 1 diabetes data sets, we analyse a combined total of 1,729 polymorphisms, and apply statistical methods - recursive partitioning and regression - to pinpoint disease susceptibility to the MHC class I genes HLA-B and HLA-A (risk ratios >1.5; Pcombined = 2.01 × 10-19 and 2.35 × 10-13, respectively) in addition to the established associations of the MHC class II genes. Other loci with smaller and/or rarer effects might also be involved, but to find these, future searches must take into account both the HLA class II and class I genes and use even larger samples. Taken together with previous studies, we conclude that MHC-class-I-mediated events, principally involving HLA-B*39, contribute to the aetiology of type 1 diabetes. ©2007 Nature Publishing Group

    Comparison of 6q25 Breast Cancer Hits from Asian and European Genome Wide Association Studies in the Breast Cancer Association Consortium (BCAC)

    Get PDF
    Peer reviewe
    corecore