21 research outputs found

    The Effect of Mineral Pigments on Mechanical Properties of Concrete

    Get PDF
     Pigmented concrete exhibits artesian properties in addition to ordinary concrete properties, explicitly high strength, excellent durability, and weather resistance. However, the influence of several parameters that affect the characteristics of colored concrete should be studied; extensively. In this paper, the impact of the w/b (water/binder) ratio using color pigments on the mechanical properties such as compressive and flexural strengths of colored cement mortar prisms and cubes experimentally investigated. The experimental program included 21 mixes with six cubes and three flexural prisms specimens for assessing compressive and flexural strength, respectively. The blends included different water/binder ratios with values of 0.4, 0.5, and 0.6, in addition to several color pigments as a partial replacement of cement. The percentage of replacements altered between 0, 2.5%, 5% and 7.5% with two different shades of pigments consisting of red iron and green chromium oxide. Based on the experimental results, empirical expressions were generated based on Abram’s law to assess the relationship between the compressive strength of colored concrete and w/b ratio. The results revealed that the compressive and flexural strength of colored concrete is influenced by w/b ratio and partially replacement percentage of cement by color pigment not proportionally direct. Furthermore, the shade of pigments also has a different impact as well

    The Role of 3D CT Imaging in the Accurate Diagnosis of Lung Function in Coronavirus Patients

    Get PDF
    Early grading of coronavirus disease 2019 (COVID-19), as well as ventilator support machines, are prime ways to help the world fight this virus and reduce the mortality rate. To reduce the burden on physicians, we developed an automatic Computer-Aided Diagnostic (CAD) system to grade COVID-19 from Computed Tomography (CT) images. This system segments the lung region from chest CT scans using an unsupervised approach based on an appearance model, followed by 3D rotation invariant Markov–Gibbs Random Field (MGRF)-based morphological constraints. This system analyzes the segmented lung and generates precise, analytical imaging markers by estimating the MGRF-based analytical potentials. Three Gibbs energy markers were extracted from each CT scan by tuning the MGRF parameters on each lesion separately. The latter were healthy/mild, moderate, and severe lesions. To represent these markers more reliably, a Cumulative Distribution Function (CDF) was generated, then statistical markers were extracted from it, namely, 10th through 90th CDF percentiles with 10% increments. Subsequently, the three extracted markers were combined together and fed into a backpropagation neural network to make the diagnosis. The developed system was assessed on 76 COVID-19-infected patients using two metrics, namely, accuracy and Kappa. In this paper, the proposed system was trained and tested by three approaches. In the first approach, the MGRF model was trained and tested on the lungs. This approach achieved 95.83% accuracy and 93.39% kappa. In the second approach, we trained the MGRF model on the lesions and tested it on the lungs. This approach achieved 91.67% accuracy and 86.67% kappa. Finally, we trained and tested the MGRF model on lesions. It achieved 100% accuracy and 100% kappa. The results reported in this paper show the ability of the developed system to accurately grade COVID-19 lesions compared to other machine learning classifiers, such as k-Nearest Neighbor (KNN), decision tree, naïve Bayes, and random forest

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Highly Functionalized Modified Metal Oxides Polymeric Sensors for Potentiometric Determination of Letrozole in Commercial Oral Tablets and Biosamples

    No full text
    The advanced and high-functional activities of magnesium oxide and copper oxide nanoparticles encourage the extensive use of these metal oxides as remarkable electroactive materials in electrochemical and sensing detections. The current study described a comparative sensing activity and selectivity of modified coated wire membrane sensors enriched with magnesium oxide and copper oxide nanoparticles for quantifying the breast cancer medication letrozole (LTZ) in its pharmaceutical form and human plasma. The fabricated sensors were based on the incorporation of LTZ with phosphomolybdic acid (PMA) to form the electroactive complex letrozole-phosphomolybate (LTZ-PM) in the presence of o-nitrophenyloctyl ether (o-NPOE) as a solvent mediator. Under optimum conditions, the modified sensors LTZ-PM-MgONPs and LTZ-PM-CuONPs demonstrated linear relationships of 1.0 × 10−8–1.0 × 10−2 and 1.0 × 10−10–1.0 × 10−2 mol L−1, respectively. Least square equations were calculated as EmV = (56.4 ± 0.7) log [LTZ] + 569.6 and EmV = (58.7 ± 0.3) log [LTZ] + 692.6 for LTZ-PM-MgONPs and LTZ-PM-CuONPs, respectively. The conventional type LTZ-PM showed a potential response EmV = (53.3 ± 0.5) log [LTZ] + 451.4 over concentration range of 1.0 × 10−6–1.0 × 10−2 mol L−1. The suggested sensors were successfully used to determine LTZ in pharmaceutical formulations and biosamples. Method validation ensured the suitability of the suggested potentiometric sensors

    Photocatalytic Oxidative Desulfurization of Thiophene by Exploiting a Mesoporous V2O5-ZnO Nanocomposite as an Effective Photocatalyst

    No full text
    Due to increasingly stringent environmental regulations imposed by governments throughout the world, the manufacture of low-sulfur fuels has received considerable assiduity in the petroleum industry. In this investigation, mesoporous V2O5-decorated two-dimensional ZnO nanocrystals were manufactured using a simple surfactant-assisted sol&ndash;gel method for thiophene photocatalytic oxidative desulfurization (TPOD) at ambient temperature applying visible illumination. When correlated to pure ZnO NCs, V2O5-added ZnO nanocomposites dramatically improved the photocatalytic desulfurization of thiophene, and the reaction was shown to follow the pseudo-first-order model. The photocatalytic effectiveness of the 3.0 wt.% V2O5-ZnO photocatalyst was the greatest among all the other samples, with a rate constant of 0.0166 min&minus;1, which was 30.7 significantly greater than that of pure ZnO NCs (0.00054 min&minus;1). Compared with ZnO NCs, and owing to their synergetic effects, substantial creation of hydroxyl radical levels, lesser light scattering action, quick transport of thiophene species to the active recenters, and efficient visible-light gathering, V2O5-ZnO nanocomposites were found to have enhanced photocatalytic efficiency. V2O5-ZnO nanocomposites demonstrated outstanding stability during TPOD. Using mesoporous V2O5-ZnO nanocomposites, the mechanism of the charge separation process was postulated

    Photocatalytic Oxidative Desulfurization of Thiophene by Exploiting a Mesoporous V<sub>2</sub>O<sub>5</sub>-ZnO Nanocomposite as an Effective Photocatalyst

    No full text
    Due to increasingly stringent environmental regulations imposed by governments throughout the world, the manufacture of low-sulfur fuels has received considerable assiduity in the petroleum industry. In this investigation, mesoporous V2O5-decorated two-dimensional ZnO nanocrystals were manufactured using a simple surfactant-assisted sol–gel method for thiophene photocatalytic oxidative desulfurization (TPOD) at ambient temperature applying visible illumination. When correlated to pure ZnO NCs, V2O5-added ZnO nanocomposites dramatically improved the photocatalytic desulfurization of thiophene, and the reaction was shown to follow the pseudo-first-order model. The photocatalytic effectiveness of the 3.0 wt.% V2O5-ZnO photocatalyst was the greatest among all the other samples, with a rate constant of 0.0166 min−1, which was 30.7 significantly greater than that of pure ZnO NCs (0.00054 min−1). Compared with ZnO NCs, and owing to their synergetic effects, substantial creation of hydroxyl radical levels, lesser light scattering action, quick transport of thiophene species to the active recenters, and efficient visible-light gathering, V2O5-ZnO nanocomposites were found to have enhanced photocatalytic efficiency. V2O5-ZnO nanocomposites demonstrated outstanding stability during TPOD. Using mesoporous V2O5-ZnO nanocomposites, the mechanism of the charge separation process was postulated
    corecore