652 research outputs found

    Magnetic Nanoparticles and microNMR for Diagnostic Applications

    Get PDF
    Sensitive and quantitative measurements of clinically relevant protein biomarkers, pathogens and cells in biological samples would be invaluable for disease diagnosis, monitoring of malignancy, and for evaluating therapy efficacy. Biosensing strategies using magnetic nanoparticles (MNPs) have recently received considerable attention, since they offer unique advantages over traditional detection methods. Specifically, because biological samples have negligible magnetic background, MNPs can be used to obtain highly sensitive measurements in minimally processed samples. This review focuses on the use of MNPs for in vitro detection of cellular biomarkers based on nuclear magnetic resonance (NMR) effects. This detection platform, termed diagnostic magnetic resonance (DMR), exploits MNPs as proximity sensors to modulate the spin-spin relaxation time of water molecules surrounding the molecularly-targeted nanoparticles. With new developments such as more effective MNP biosensors, advanced conjugational strategies, and highly sensitive miniaturized NMR systems, the DMR detection capabilities have been considerably improved. These developments have also enabled parallel and rapid measurements from small sample volumes and on a wide range of targets, including whole cells, proteins, DNA/mRNA, metabolites, drugs, viruses and bacteria. The DMR platform thus makes a robust and easy-to-use sensor system with broad applications in biomedicine, as well as clinical utility in point-of-care settings

    Sodium-glucose cotransporter-2 inhibitors and incidence of atrial fibrillation in older adults with type 2 diabetes: a retrospective cohort analysis

    Get PDF
    ObjectivesTo investigate the risk of atrial fibrillation (AF) with sodium-glucose cotransporter-2 inhibitors (SGLT2is) compared to dipeptidyl peptidase-4 inhibitor (DPP4i) use in older US adults and across diverse subgroups.MethodsWe conducted a retrospective cohort analysis using claims data from 15% random samples of Medicare fee-for-service beneficiaries. Patients were adults with type 2 diabetes (T2D), no preexisting AF, and were newly initiated on SGLT2i or DPP4i. The outcome was the first incident AF. Inverse probability treatment weighting (IPTW) was used to balance the baseline covariates between the treatment groups including sociodemographics, comorbidities, and co-medications. Cox regression models were used to assess the effect of SGLT2i compared to DPP4i on incident AF.ResultsOf the 97,436 eligible individuals (mean age 71.2 ± 9.8 years, 54.6% women), 1.01% (n = 983) had incident AF over a median follow-up of 361 days. The adjusted incidence rate was 8.39 (95% CI: 6.67–9.99) and 11.70 (95% CI: 10.9–12.55) per 1,000 person-years in the SGLT2i and DPP4i groups, respectively. SGLT2is were associated with a significantly lower risk of incident AF (HR 0.73; 95% CI, 0.57 to 0.91; p = 0.01) than DPP4is. The risk reduction of incident AF was significant in non-Hispanic White individuals and subgroups with existing atherosclerotic cardiovascular diseases and chronic kidney disease.ConclusionCompared to the use of DPP4i, that of SGLT2i was associated with a lower risk of AF in patients with T2D. Our findings contribute to the real-world evidence regarding the effectiveness of SGLT2i in preventing AF and support a tailored therapeutic approach to optimize treatment selection based on individual characteristics

    Cost Effectiveness of Sodium-Glucose Cotransporter 2 Inhibitors Compared with Mineralocorticoid Receptor Antagonists among Patients with Heart Failure and a Reduced Ejection Fraction

    Get PDF
    Objective: Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are approved for heart failure with reduced ejection fraction (HFrEF). However, their cost-effectiveness remains unknown. We aimed to compare the cost-effectiveness of SGLT2i versus mineralocorticoid antagonists (MRAs). Methods: Data from the RALES, EPHESUS, EMPHASIS, DAPA-HF, and EMPEROR-Reduced trials were included. We calculated the risk-ratio (RR) for a composite of cardiovascular death or heart failure hospitalization (CV death-HHF), all-cause mortality, and heart failure hospitalization (HHF) between MRAs and SGLT2i. A Markov model was developed to simulate the progression of HFrEF over 5 years. The primary outcome was incremental cost-effectiveness ratio (ICER), measured by cost per quality-adjusted life-year (QALY) gained. Results: We observed a similar benefit in CV death-HHF (RR 1.04; 95% CI 0.82–1.31), all-cause mortality (RR 0.91; 95% CI 0.78–1.06), and HHF (RR 1.05; 95% CI 0.84–1.31) between MRAs and SGLT2i. In a 5-year model, no difference in survival was observed between treatments. MRAs were associated with lower cost (63,135.52vs.63,135.52 vs. 80,365.31) and more QALYs gained per patient (2.53 versus 2.49) than SGLT2i. The ICER for SGLT2i versus MRAs was $-172,014.25/QALY, in favor of MRAs. Conclusion: MRAs and SGLT2i provided similar benefits; however, MRAs were a more cost-effective treatment than SGLT2i

    Measurement of the top quark forward-backward production asymmetry and the anomalous chromoelectric and chromomagnetic moments in pp collisions at √s = 13 TeV

    Get PDF
    Abstract The parton-level top quark (t) forward-backward asymmetry and the anomalous chromoelectric (d̂ t) and chromomagnetic (μ̂ t) moments have been measured using LHC pp collisions at a center-of-mass energy of 13 TeV, collected in the CMS detector in a data sample corresponding to an integrated luminosity of 35.9 fb−1. The linearized variable AFB(1) is used to approximate the asymmetry. Candidate t t ¯ events decaying to a muon or electron and jets in final states with low and high Lorentz boosts are selected and reconstructed using a fit of the kinematic distributions of the decay products to those expected for t t ¯ final states. The values found for the parameters are AFB(1)=0.048−0.087+0.095(stat)−0.029+0.020(syst),μ̂t=−0.024−0.009+0.013(stat)−0.011+0.016(syst), and a limit is placed on the magnitude of | d̂ t| < 0.03 at 95% confidence level. [Figure not available: see fulltext.

    Measurement of t(t)over-bar normalised multi-differential cross sections in pp collisions at root s=13 TeV, and simultaneous determination of the strong coupling strength, top quark pole mass, and parton distribution functions

    Get PDF
    Peer reviewe

    An embedding technique to determine ττ backgrounds in proton-proton collision data

    Get PDF
    An embedding technique is presented to estimate standard model tau tau backgrounds from data with minimal simulation input. In the data, the muons are removed from reconstructed mu mu events and replaced with simulated tau leptons with the same kinematic properties. In this way, a set of hybrid events is obtained that does not rely on simulation except for the decay of the tau leptons. The challenges in describing the underlying event or the production of associated jets in the simulation are avoided. The technique described in this paper was developed for CMS. Its validation and the inherent uncertainties are also discussed. The demonstration of the performance of the technique is based on a sample of proton-proton collisions collected by CMS in 2017 at root s = 13 TeV corresponding to an integrated luminosity of 41.5 fb(-1).Peer reviewe

    Measurement of the Splitting Function in &ITpp &ITand Pb-Pb Collisions at root&ITsNN&IT=5.02 TeV

    Get PDF
    Data from heavy ion collisions suggest that the evolution of a parton shower is modified by interactions with the color charges in the dense partonic medium created in these collisions, but it is not known where in the shower evolution the modifications occur. The momentum ratio of the two leading partons, resolved as subjets, provides information about the parton shower evolution. This substructure observable, known as the splitting function, reflects the process of a parton splitting into two other partons and has been measured for jets with transverse momentum between 140 and 500 GeV, in pp and PbPb collisions at a center-of-mass energy of 5.02 TeV per nucleon pair. In central PbPb collisions, the splitting function indicates a more unbalanced momentum ratio, compared to peripheral PbPb and pp collisions.. The measurements are compared to various predictions from event generators and analytical calculations.Peer reviewe

    MUSiC : a model-unspecific search for new physics in proton-proton collisions at root s=13TeV

    Get PDF
    Results of the Model Unspecific Search in CMS (MUSiC), using proton-proton collision data recorded at the LHC at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1), are presented. The MUSiC analysis searches for anomalies that could be signatures of physics beyond the standard model. The analysis is based on the comparison of observed data with the standard model prediction, as determined from simulation, in several hundred final states and multiple kinematic distributions. Events containing at least one electron or muon are classified based on their final state topology, and an automated search algorithm surveys the observed data for deviations from the prediction. The sensitivity of the search is validated using multiple methods. No significant deviations from the predictions have been observed. For a wide range of final state topologies, agreement is found between the data and the standard model simulation. This analysis complements dedicated search analyses by significantly expanding the range of final states covered using a model independent approach with the largest data set to date to probe phase space regions beyond the reach of previous general searches.Peer reviewe

    Measurement of prompt open-charm production cross sections in proton-proton collisions at root s=13 TeV

    Get PDF
    The production cross sections for prompt open-charm mesons in proton-proton collisions at a center-of-mass energy of 13TeV are reported. The measurement is performed using a data sample collected by the CMS experiment corresponding to an integrated luminosity of 29 nb(-1). The differential production cross sections of the D*(+/-), D-+/-, and D-0 ((D) over bar (0)) mesons are presented in ranges of transverse momentum and pseudorapidity 4 < p(T) < 100 GeV and vertical bar eta vertical bar < 2.1, respectively. The results are compared to several theoretical calculations and to previous measurements.Peer reviewe

    Search for Physics beyond the Standard Model in Events with Overlapping Photons and Jets

    Get PDF
    Results are reported from a search for new particles that decay into a photon and two gluons, in events with jets. Novel jet substructure techniques are developed that allow photons to be identified in an environment densely populated with hadrons. The analyzed proton-proton collision data were collected by the CMS experiment at the LHC, in 2016 at root s = 13 TeV, and correspond to an integrated luminosity of 35.9 fb(-1). The spectra of total transverse hadronic energy of candidate events are examined for deviations from the standard model predictions. No statistically significant excess is observed over the expected background. The first cross section limits on new physics processes resulting in such events are set. The results are interpreted as upper limits on the rate of gluino pair production, utilizing a simplified stealth supersymmetry model. The excluded gluino masses extend up to 1.7 TeV, for a neutralino mass of 200 GeV and exceed previous mass constraints set by analyses targeting events with isolated photons.Peer reviewe
    corecore