54 research outputs found
First-principles calculations of the crystal structure, electronic structure, and thermodynamic stability of Be(BH4)2
Alanates and boranates are intensively studied because of their potential use as hydrogen storage materials. In this paper, we present a first-principles study of the electronic structure and the energetics of beryllium boranate BeBH42. From total energy calculations, we show thatâin contrast to the other boranates and alanatesâhydrogen desorption directly to the elements is likely and is at least competitive with desorption to the elemental hydride BeH2. The formation enthalpy of BeBH42 is only â0.14 eV/H2 at T=0 K. This low value can be rationalized by the participation of all atoms in the covalent bonding, which is in contrast to the ionic bonding observed in other boranates. From calculations of thermodynamic properties at finite temperature, we estimate a decomposition temperature of 162 K at a pressure of 1 bar
Computationally-driven, high throughput identification of CaTe and LiSb as promising candidates for high mobility -type transparent conducting materials
High-performance -type transparent conducting materials (TCMs) must
exhibit a rare combination of properties including high mobility, transparency
and -type dopability. The development of high-mobility/conductivity -type
TCMs is necessary for many applications such as solar cells, or transparent
electronic devices. Oxides have been traditionally considered as the most
promising chemical space to dig out novel -type TCMs. However, non-oxides
might perform better than traditional -type TCMs (oxides) in terms of
mobility. We report on a high-throughput (HT) computational search for
non-oxide -type TCMs from a large dataset of more than 30,000 compounds
which identified CaTe and LiSb as very good candidates for
high-mobility -type TCMs. From our calculations, both compounds are expected
to be -type dopable: intrinsically for LiSb while CaTe would
require extrinsic doping. Using electron-phonon computations, we estimate hole
mobilities at room-temperature to be about 20 and 70 cm/Vs for CaTe and
LiSb, respectively. The computed hole mobility for
LiSb is quite exceptional and comparable with the electron
mobility in the best -type TCMs.Comment: 10 pages, 5 figure
Assessing GW approaches for predicting core level binding energies
Here we present a systematic study on the performance of different GW approaches: G(0)W(0), G(0)W(0) with linearized quasiparticle equation (lin-G(0)W(0)), and quasiparticle self-consistent GW (qsGW), in predicting core level binding energies (CLBEs) on a series of representative molecules comparing to Kohn-Sham (KS) orbital energy-based results. KS orbital energies obtained using the PBE functional are 20-30 eV lower in energy than experimental values obtained from X-ray photoemission spectroscopy (XPS), showing that any Koopmans-like interpretation of KS core level orbitals fails dramatically. Results from qsGW lead to CLBEs that are closer to experimental values from XPS, yet too large. For the qsGW method, the mean absolute error is about 2 eV, an order of magnitude better than plain KS PBE orbital energies and quite close to predictions from Delta SCF calculations with the same functional, which are accurate within similar to 1 eV. Smaller errors of similar to 0.6 eV are found for qsGW CLBE shifts, again similar to those obtained using Delta SCF PBE. The computationally more affordable G(0)W(0) approximation leads to results less accurate than qsGW, with an error of similar to 9 eV for CLBEs and similar to 0.9 eV for their shifts. Interestingly, starting G(0)W(0) from PBEO reduces this error to similar to 4 eV with a slight improvement on the shifts as well (similar to 0.4 eV). The validity of the G(0)W(0) results is however questionable since only linearized quasiparticle equation results can be obtained. The present results pave the way to estimate CLBEs in periodic systems where Delta SCF calculations are not straightforward although further improvement is clearly needed
First principles modelling of magnesium titanium hydrides
Mixing Mg with Ti leads to a hydride Mg(x)Ti(1-x)H2 with markedly improved
(de)hydrogenation properties for x < 0.8, as compared to MgH2. Optically, thin
films of Mg(x)Ti(1-x)H2 have a black appearance, which is remarkable for a
hydride material. In this paper we study the structure and stability of
Mg(x)Ti(1-x)H2, x= 0-1 by first-principles calculations at the level of density
functional theory. We give evidence for a fluorite to rutile phase transition
at a critical composition x(c)= 0.8-0.9, which correlates with the
experimentally observed sharp decrease in (de)hydrogenation rates at this
composition. The densities of states of Mg(x)Ti(1-x)H2 have a peak at the Fermi
level, composed of Ti d states. Disorder in the positions of the Ti atoms
easily destroys the metallic plasma, however, which suppresses the optical
reflection. Interband transitions result in a featureless optical absorption
over a large energy range, causing the black appearance of Mg(x)Ti(1-x)H2.Comment: 22 pages, 9 figures, 4 table
A model for the formation energies of alanates and boranates
We develop a simple model for the formation energies (FEs) of alkali and
lkaline earth alanates and boranates, based upon ionic bonding between metal
cations and (AlH4)- or (BH4)- anions. The FEs agree well with values obtained
from first principles calculations and with experimental FEs. The model shows
that details of the crystal structure are relatively unimportant. The small
size of the (BH4)- anion causes a strong bonding in the crystal, which makes
boranates more stable than alanates. Smaller alkali or alkaline earth cations
do not give an increased FE. They involve a larger ionization potential that
compensates for the increased crystal bonding.Comment: 3 pages, 2 figure
Exome-chip meta-analysis identifies novel loci associated with cardiac conduction, including ADAMTS6.
BACKGROUND: Genome-wide association studies conducted on QRS duration, an electrocardiographic measurement associated with heart failure and sudden cardiac death, have led to novel biological insights into cardiac function. However, the variants identified fall predominantly in non-coding regions and their underlying mechanisms remain unclear. RESULTS: Here, we identify putative functional coding variation associated with changes in the QRS interval duration by combining Illumina HumanExome BeadChip genotype data from 77,898 participants of European ancestry and 7695 of African descent in our discovery cohort, followed by replication in 111,874Â individuals of European ancestry from the UK Biobank and deCODE cohorts. We identify ten novel loci, seven within coding regions, including ADAMTS6, significantly associated with QRS duration in gene-based analyses. ADAMTS6 encodes a secreted metalloprotease of currently unknown function. In vitro validation analysis shows that the QRS-associated variants lead to impaired ADAMTS6 secretion and loss-of function analysis in mice demonstrates a previously unappreciated role for ADAMTS6 in connexin 43 gap junction expression, which is essential for myocardial conduction. CONCLUSIONS: Our approach identifies novel coding and non-coding variants underlying ventricular depolarization and provides a possible mechanism for the ADAMTS6-associated conduction changes.BH
Association of Factor V Leiden with Subsequent Atherothrombotic Events:A GENIUS-CHD Study of Individual Participant Data
BACKGROUND: Studies examining the role of factor V Leiden among patients at higher risk of atherothrombotic events, such as those with established coronary heart disease (CHD), are lacking. Given that coagulation is involved in the thrombus formation stage on atherosclerotic plaque rupture, we hypothesized that factor V Leiden may be a stronger risk factor for atherothrombotic events in patients with established CHD. METHODS: We performed an individual-level meta-analysis including 25 prospective studies (18 cohorts, 3 case-cohorts, 4 randomized trials) from the GENIUS-CHD (Genetics of Subsequent Coronary Heart Disease) consortium involving patients with established CHD at baseline. Participating studies genotyped factor V Leiden status and shared risk estimates for the outcomes of interest using a centrally developed statistical code with harmonized definitions across studies. Cox proportional hazards regression models were used to obtain age- and sex-adjusted estimates. The obtained estimates were pooled using fixed-effect meta-analysis. The primary outcome was composite of myocardial infarction and CHD death. Secondary outcomes included any stroke, ischemic stroke, coronary revascularization, cardiovascular mortality, and all-cause mortality. RESULTS: The studies included 69â681 individuals of whom 3190 (4.6%) were either heterozygous or homozygous (n=47) carriers of factor V Leiden. Median follow-up per study ranged from 1.0 to 10.6 years. A total of 20 studies with 61â147 participants and 6849 events contributed to analyses of the primary outcome. Factor V Leiden was not associated with the combined outcome of myocardial infarction and CHD death (hazard ratio, 1.03 [95% CI, 0.92-1.16]; I2=28%; P-heterogeneity=0.12). Subgroup analysis according to baseline characteristics or strata of traditional cardiovascular risk factors did not show relevant differences. Similarly, risk estimates for the secondary outcomes including stroke, coronary revascularization, cardiovascular mortality, and all-cause mortality were also close to identity. CONCLUSIONS: Factor V Leiden was not associated with increased risk of subsequent atherothrombotic events and mortality in high-risk participants with established and treated CHD. Routine assessment of factor V Leiden status is unlikely to improve atherothrombotic events risk stratification in this population
ABINIT: Overview and focus on selected capabilities
Paper published as part of the special topic on Electronic Structure SoftwareABINIT is probably the first electronic-structure package to have been released under an open-source license about 20 years ago. It implements density functional theory, density-functional perturbation theory (DFPT), many-body perturbation theory (GW approximation and
BetheâSalpeter equation), and more specific or advanced formalisms, such as dynamical mean-field theory (DMFT) and the âtemperaturedependent effective potentialâ approach for anharmonic effects. Relying on planewaves for the representation of wavefunctions, density, and
other space-dependent quantities, with pseudopotentials or projector-augmented waves (PAWs), it is well suited for the study of periodic
materials, although nanostructures and molecules can be treated with the supercell technique. The present article starts with a brief description of the project, a summary of the theories upon which ABINIT relies, and a list of the associated capabilities. It then focuses on selected
capabilities that might not be present in the majority of electronic structure packages either among planewave codes or, in general, treatment
of strongly correlated materials using DMFT; materials under finite electric fields; properties at nuclei (electric field gradient, Mössbauer shifts,
and orbital magnetization); positron annihilation; Raman intensities and electro-optic effect; and DFPT calculations of response to strain perturbation (elastic constants and piezoelectricity), spatial dispersion (flexoelectricity), electronic mobility, temperature dependence of the gap,
and spin-magnetic-field perturbation. The ABINIT DFPT implementation is very general, including systems with van der Waals interaction or
with noncollinear magnetism. Community projects are also described: generation of pseudopotential and PAW datasets, high-throughput
calculations (databases of phonon band structure, second-harmonic generation, and GW computations of bandgaps), and the library LIBPAW.
ABINIT has strong links with many other software projects that are briefly mentioned.This work (A.H.R.) was supported by the DMREF-NSF Grant No. 1434897, National Science Foundation OAC-1740111, and U.S. Department of Energy DE-SC0016176 and DE-SC0019491 projects.
N.A.P. and M.J.V. gratefully acknowledge funding from the Belgian Fonds National de la Recherche Scientifique (FNRS) under Grant No. PDR T.1077.15-1/7. M.J.V. also acknowledges a sabbatical âOUTâ grant at ICN2 Barcelona as well as ULiĂšge and the CommunautĂ© Française de Belgique (Grant No. ARC AIMED G.A. 15/19-09).
X.G. and M.J.V. acknowledge funding from the FNRS under Grant No. T.0103.19-ALPS.
X.G. and G.-M. R. acknowledge support from the Communauté française de Belgique through the SURFASCOPE Project (No. ARC 19/24-057).
X.G. acknowledges the hospitality of the CEA DAM-DIF during the year 2017.
G.H. acknowledges support from the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under Contract No. DE-AC02-05-CH11231 (Materials Project Program No. KC23MP).
The Belgian authors acknowledge computational resources from supercomputing facilities of the University of LiĂšge, the Consortium des Equipements de Calcul Intensif (Grant No. FRS-FNRS G.A. 2.5020.11), and Zenobe/CENAERO funded by the Walloon Region under Grant No. G.A. 1117545.
M.C. and O.G. acknowledge support from the Fonds de Recherche du Québec Nature et Technologie (FRQ-NT), Canada, and the Natural Sciences and Engineering Research Council of Canada (NSERC) under Grant No. RGPIN-2016-06666.
The implementation of the libpaw library (M.T., T.R., and D.C.) was supported by the ANR NEWCASTLE project (Grant No. ANR-2010-COSI-005-01) of the French National Research Agency.
M.R. and M.S. acknowledge funding from Ministerio de Economia, Industria y Competitividad (MINECO-Spain) (Grants Nos. MAT2016-77100-C2-2-P and SEV-2015-0496) and Generalitat de Catalunya (Grant No. 2017 SGR1506). This work has received funding from the European Research Council (ERC) under the European Unionâs Horizon 2020 Research and Innovation program (Grant Agreement No. 724529).
P.G. acknowledges support from FNRS Belgium through PDR (Grant No. HiT4FiT), ULiĂšge and the CommunautĂ© française de Belgique through the ARC project AIMED, the EU and FNRS through M.ERA.NET project SIOX, and the European Funds for Regional Developments (FEDER) and the Walloon Region in the framework of the operational program âWallonie-2020.EUâ through the project Multifunctional thin films/LoCoTED.
The Flatiron Institute is a division of the Simons Foundation.
A large part of the data presented in this paper is available directly from the Abinit Web page www.abinit.org. Any other data not appearing in this web page can be provided by the corresponding author upon reasonable request.Peer reviewe
52 Genetic Loci Influencing Myocardial Mass.
BACKGROUND: Myocardial mass is a key determinant of cardiac muscle function and hypertrophy. Myocardial depolarization leading to cardiac muscle contraction is reflected by the amplitude and duration of the QRS complex on the electrocardiogram (ECG). Abnormal QRS amplitude or duration reflect changes in myocardial mass and conduction, and are associated with increased risk of heart failure and death. OBJECTIVES: This meta-analysis sought to gain insights into the genetic determinants of myocardial mass. METHODS: We carried out a genome-wide association meta-analysis of 4 QRS traits in up to 73,518 individuals of European ancestry, followed by extensive biological and functional assessment. RESULTS: We identified 52 genomic loci, of which 32 are novel, that are reliably associated with 1 or more QRS phenotypes at p < 1 à 10(-8). These loci are enriched in regions of open chromatin, histone modifications, and transcription factor binding, suggesting that they represent regions of the genome that are actively transcribed in the human heart. Pathway analyses provided evidence that these loci play a role in cardiac hypertrophy. We further highlighted 67 candidate genes at the identified loci that are preferentially expressed in cardiac tissue and associated with cardiac abnormalities in Drosophila melanogaster and Mus musculus. We validated the regulatory function of a novel variant in the SCN5A/SCN10A locus in vitro and in vivo. CONCLUSIONS: Taken together, our findings provide new insights into genes and biological pathways controlling myocardial mass and may help identify novel therapeutic targets
Subsequent Event Risk in Individuals with Established Coronary Heart Disease:Design and Rationale of the GENIUS-CHD Consortium
BACKGROUND:
The "GENetIcs of sUbSequent Coronary Heart Disease" (GENIUS-CHD) consortium was established to facilitate discovery and validation of genetic variants and biomarkers for risk of subsequent CHD events, in individuals with established CHD.
METHODS:
The consortium currently includes 57 studies from 18 countries, recruiting 185,614 participants with either acute coronary syndrome, stable CHD or a mixture of both at baseline. All studies collected biological samples and followed-up study participants prospectively for subsequent events.
RESULTS:
Enrollment into the individual studies took place between 1985 to present day with duration of follow up ranging from 9 months to 15 years. Within each study, participants with CHD are predominantly of self-reported European descent (38%-100%), mostly male (44%-91%) with mean ages at recruitment ranging from 40 to 75 years. Initial feasibility analyses, using a federated analysis approach, yielded expected associations between age (HR 1.15 95% CI 1.14-1.16) per 5-year increase, male sex (HR 1.17, 95% CI 1.13-1.21) and smoking (HR 1.43, 95% CI 1.35-1.51) with risk of subsequent CHD death or myocardial infarction, and differing associations with other individual and composite cardiovascular endpoints.
CONCLUSIONS:
GENIUS-CHD is a global collaboration seeking to elucidate genetic and non-genetic determinants of subsequent event risk in individuals with established CHD, in order to improve residual risk prediction and identify novel drug targets for secondary prevention. Initial analyses demonstrate the feasibility and reliability of a federated analysis approach. The consortium now plans to initiate and test novel hypotheses as well as supporting replication and validation analyses for other investigators
- âŠ