43 research outputs found
Crystal Structures of the HslVU Peptidase–ATPase Complex Reveal an ATP-Dependent Proteolysis Mechanism
AbstractBackground: The bacterial heat shock locus HslU ATPase and HslV peptidase together form an ATP-dependent HslVU protease. Bacterial HslVU is a homolog of the eukaryotic 26S proteasome. Crystallographic studies of HslVU should provide an understanding of ATP-dependent protein unfolding, translocation, and proteolysis by this and other ATP-dependent proteases.Results: We present a 3.0 Å resolution crystal structure of HslVU with an HslU hexamer bound at one end of an HslV dodecamer. The structure shows that the central pores of the ATPase and peptidase are next to each other and aligned. The central pore of HslU consists of a GYVG motif, which is conserved among protease-associated ATPases. The binding of one HslU hexamer to one end of an HslV dodecamer in the 3.0 Å resolution structure opens both HslV central pores and induces asymmetric changes in HslV.Conclusions: Analysis of nucleotide binding induced conformational changes in the current and previous HslU structures suggests a protein unfolding–coupled translocation mechanism. In this mechanism, unfolded polypeptides are threaded through the aligned pores of the ATPase and peptidase and translocated into the peptidase central chamber
Low energy fast events from radon progenies at the surface of a CsI(Tl) scintillator
In searches for rare phenomena such as elastic scattering of dark matter
particles or neutrinoless double beta decay, alpha decays of Rn222 progenies
attached to the surfaces of the detection material have been identified as a
serious source of background. In measurements with CsI(Tl) scintillator
crystals, we demonstrate that alpha decays of surface contaminants produce fast
signals with a characteristic mean-time distribution that is distinct from
those of neutron- and gamma-induced events.Comment: 9 pages, 8 figure
Readout technologies for directional WIMP Dark Matter detection
The measurement of the direction of WIMP-induced nuclear recoils is a compelling but technologically challenging
strategy to provide an unambiguous signature of the detection of Galactic dark matter. Most directional detectors aim
to reconstruct the dark-matter-induced nuclear recoil tracks, either in gas or solid targets. The main challenge with directional detection is the need for high spatial resolution over large volumes, which puts strong requirements on the
readout technologies. In this paper we review the various detector readout technologies used by directional detectors.
In particular, we summarize the challenges, advantages and drawbacks of each approach, and discuss future prospects
for these technologies
Measurement of the quenching and channeling effects in a CsI crystal used for a WIMP search
We have studied channeling effects in a cesium iodide (CsI) crystal that is similar in composition to the ones being used in a search for Weakly Interacting Massive Particles (WIMPs) dark matter candidates, and measured its energy-dependent quenching factor, the relative scintillation yield for electron and nuclear recoils. The experimental results are reproduced with a GEANT4 simulation that includes a model of the scintillation efficiency as a function of electronic stopping power. We present the measured and simulated quenching factors and the estimated effects of channeling1221Nsciescopu