75 research outputs found

    Structural complexity and location affect the habitat value of restored oyster reefs

    Get PDF
    Oyster reefs provide a suite of valuable ecosystem services, such as water filtration, nitrogen sequestration, and provision of habitat and foraging grounds. The global decline of these habitats has had negative economic and ecological impacts to coastal waters worldwide. In the Chesapeake Bay, \u3c 1% of the historic oyster population remains and efforts to restore oyster populations and the services they provide have been increasing. Building reefs that successfully provide specific ecosystem services may require different techniques then previously used, and success may depend on reef morphology, location, and environmental conditions. Settling trays were embedded into previously restored oyster reefs that varied in their structural complexity (rugosity) in multiple rivers in the lower Chesapeake Bay. Trays were collected after 7-weeks, sorted, and species identified and weighed (ash-free dry weight) to obtain species diversity, abundance, and biomass. Species composition data was analyzed using nMDS plots, which showed that salinity was an important driver of differences in species composition. Results of an ANOVA analysis found that species diversity was significantly greater on reefs in the high-salinity rivers compared to reefs in low-salinity rivers. Total organism abundance and biomass were positively correlated with reef structural complexity measures, such as rugosity, oyster clump volume, and oyster biomass. These results suggest that more complex oyster reefs in higher salinity locations may support more diverse and productive benthic communities. This study provides insight into the driving factors that structure oyster reef communities and has important implications for oyster reef restoration design and management

    Adaptive aerodynamic part feeding enabled by genetic algorithm

    Get PDF
    Aerodynamic feeding systems represent one possibility to meet the challenges of part feeding for automated production in terms of feeding performance and flexibility. The aerodynamic feeding system investigated in this article is already able to adapt itself to different workpieces using a genetic algorithm. However, due to the operating principle, the system is susceptible to changes in environmental conditions such as air pressure and pollution (e.g. dust). To minimise the effect of ambient influences, the system must be enabled to detect changes in the feeding rate and react autonomously by adapting the system’s adjustment parameters. In this work, based on pre-identified factors interfering with the aerodynamic orientation process, a new approach is developed to react to changes of the ambient conditions during operation. The presented approach makes us of an alternating sequence of monitoring and corrective algorithms. The monitoring algorithm measures the ratio of correctly oriented parts to the total number of fed parts of the process and triggers the corrective algorithm if necessary. Simulated and experimental results both show that an increased feeding rate can be achieved in varying conditions. Furthermore, it is shown that integrating both known process and parameter information can reduce the time for re-parametrisation of the feeding system

    Improving MRO order processing by means of advanced technological diagnostics and data mining approaches

    Get PDF
    Production planning based on uncertain load information may lead to low schedule adherence or low capacity utilization. Thus, maintenance, repair and overhaul (MRO) service providers are striving to improve their business processes to achieve high logistics efficiency. To estimate repair expenditures and material demands as early as possible, different approaches may be pursued. In this paper, the advancement of technological diagnostics to enable condition assessment without prior disassembly and the use of data mining to generate reliable forecasts are discussed. Thereby, the potential for planning MRO order processing is focused using the example of aircraft engines and rail vehicle transformers

    The Medical Action Ontology: A tool for annotating and analyzing treatments and clinical management of human disease.

    Get PDF
    BACKGROUND: Navigating the clinical literature to determine the optimal clinical management for rare diseases presents significant challenges. We introduce the Medical Action Ontology (MAxO), an ontology specifically designed to organize medical procedures, therapies, and interventions. METHODS: MAxO incorporates logical structures that link MAxO terms to numerous other ontologies within the OBO Foundry. Term development involves a blend of manual and semi-automated processes. Additionally, we have generated annotations detailing diagnostic modalities for specific phenotypic abnormalities defined by the Human Phenotype Ontology (HPO). We introduce a web application, POET, that facilitates MAxO annotations for specific medical actions for diseases using the Mondo Disease Ontology. FINDINGS: MAxO encompasses 1,757 terms spanning a wide range of biomedical domains, from human anatomy and investigations to the chemical and protein entities involved in biological processes. These terms annotate phenotypic features associated with specific disease (using HPO and Mondo). Presently, there are over 16,000 MAxO diagnostic annotations that target HPO terms. Through POET, we have created 413 MAxO annotations specifying treatments for 189 rare diseases. CONCLUSIONS: MAxO offers a computational representation of treatments and other actions taken for the clinical management of patients. Its development is closely coupled to Mondo and HPO, broadening the scope of our computational modeling of diseases and phenotypic features. We invite the community to contribute disease annotations using POET (https://poet.jax.org/). MAxO is available under the open-source CC-BY 4.0 license (https://github.com/monarch-initiative/MAxO). FUNDING: NHGRI 1U24HG011449-01A1 and NHGRI 5RM1HG010860-04

    The Human Phenotype Ontology in 2024: phenotypes around the world.

    Get PDF
    The Human Phenotype Ontology (HPO) is a widely used resource that comprehensively organizes and defines the phenotypic features of human disease, enabling computational inference and supporting genomic and phenotypic analyses through semantic similarity and machine learning algorithms. The HPO has widespread applications in clinical diagnostics and translational research, including genomic diagnostics, gene-disease discovery, and cohort analytics. In recent years, groups around the world have developed translations of the HPO from English to other languages, and the HPO browser has been internationalized, allowing users to view HPO term labels and in many cases synonyms and definitions in ten languages in addition to English. Since our last report, a total of 2239 new HPO terms and 49235 new HPO annotations were developed, many in collaboration with external groups in the fields of psychiatry, arthrogryposis, immunology and cardiology. The Medical Action Ontology (MAxO) is a new effort to model treatments and other measures taken for clinical management. Finally, the HPO consortium is contributing to efforts to integrate the HPO and the GA4GH Phenopacket Schema into electronic health records (EHRs) with the goal of more standardized and computable integration of rare disease data in EHRs

    Shared genetic risk between eating disorder- and substance-use-related phenotypes:Evidence from genome-wide association studies

    Get PDF
    First published: 16 February 202

    Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders

    Get PDF
    Genetic influences on psychiatric disorders transcend diagnostic boundaries, suggesting substantial pleiotropy of contributing loci. However, the nature and mechanisms of these pleiotropic effects remain unclear. We performed analyses of 232,964 cases and 494,162 controls from genome-wide studies of anorexia nervosa, attention-deficit/hyper-activity disorder, autism spectrum disorder, bipolar disorder, major depression, obsessive-compulsive disorder, schizophrenia, and Tourette syndrome. Genetic correlation analyses revealed a meaningful structure within the eight disorders, identifying three groups of inter-related disorders. Meta-analysis across these eight disorders detected 109 loci associated with at least two psychiatric disorders, including 23 loci with pleiotropic effects on four or more disorders and 11 loci with antagonistic effects on multiple disorders. The pleiotropic loci are located within genes that show heightened expression in the brain throughout the lifespan, beginning prenatally in the second trimester, and play prominent roles in neurodevelopmental processes. These findings have important implications for psychiatric nosology, drug development, and risk prediction.Peer reviewe

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    • 

    corecore