1,755 research outputs found

    Talking quiescence: a rigorous theory that supports parallel composition, action hiding and determinisation

    Get PDF
    The notion of quiescence - the absence of outputs - is vital in both behavioural modelling and testing theory. Although the need for quiescence was already recognised in the 90s, it has only been treated as a second-class citizen thus far. This paper moves quiescence into the foreground and introduces the notion of quiescent transition systems (QTSs): an extension of regular input-output transition systems (IOTSs) in which quiescence is represented explicitly, via quiescent transitions. Four carefully crafted rules on the use of quiescent transitions ensure that our QTSs naturally capture quiescent behaviour. We present the building blocks for a comprehensive theory on QTSs supporting parallel composition, action hiding and determinisation. In particular, we prove that these operations preserve all the aforementioned rules. Additionally, we provide a way to transform existing IOTSs into QTSs, allowing even IOTSs as input that already contain some quiescent transitions. As an important application, we show how our QTS framework simplifies the fundamental model-based testing theory formalised around ioco.Comment: In Proceedings MBT 2012, arXiv:1202.582

    A balanced formula of essential amino acids promotes brain mitochondrial biogenesis and protects neurons from ischemic insult

    Get PDF
    Mitochondrial dysfunction plays a key role in the aging process, and aging is a strong risk factor for neurodegenerative diseases or brain injury characterized by impairment of mitochondrial function. Among these, ischemic stroke is one of the leading causes of death and permanent disability worldwide. Pharmacological approaches for its prevention and therapy are limited. Although non-pharmacological interventions such as physical exercise, which promotes brain mitochondrial biogenesis, have been shown to exert preventive effects against ischemic stroke, regular feasibility is complex in older people, and nutraceutical strategies could be valuable alternatives. We show here that dietary supplementation with a balanced essential amino acid mixture (BCAAem) increased mitochondrial biogenesis and the endogenous antioxidant response in the hippocampus of middle-aged mice to an extent comparable to those elicited by treadmill exercise training, suggesting BCAAem as an effective exercise mimetic on brain mitochondrial health and disease prevention. In vitro BCAAem treatment directly exerted mitochondrial biogenic effects and induced antioxidant enzyme expression in primary mouse cortical neurons. Further, exposure to BCAAem protected cortical neurons from the ischemic damage induced by an in vitro model of cerebral ischemia (oxygen-glucose deprivation, OGD). BCAAem-mediated protection against OGD was abolished in the presence of rapamycin, Torin-1, or L-NAME, indicating the requirement of both mTOR and eNOS signaling pathways in the BCAAem effects. We propose BCAAem supplementation as an alternative to physical exercise to prevent brain mitochondrial derangements leading to neurodegeneration and as a nutraceutical intervention aiding recovery after cerebral ischemia in conjunction with conventional drugs

    Non-invasive investigation of adipose tissue by time domain diffuse optical spectroscopy

    Get PDF
    The human abdominal region is very heterogeneous and stratified with subcutaneous adipose tissue (SAT) being one of the primary layers. Monitoring this tissue is crucial for diagnostic purposes and to estimate the effects of interventions like caloric restriction or bariatric surgery. However, the layered nature of the abdomen poses a major problem in monitoring the SAT in a non-invasive way by diffuse optics. In this work, we examine the possibility of using multi-distance broadband time domain diffuse optical spectroscopy to assess the human abdomen non-invasively. Broadband absorption and reduced scattering spectra from 600 to 1100 nm were acquired at 1, 2 and 3 cm source-detector distances on ten healthy adult male volunteers, and then analyzed using a homogeneous model as an initial step to understand the origin of the detected signal and how tissue should be modeled to derive quantitative information. The results exhibit a clear influence of the layered nature on the estimated optical properties. Clearly, the underlying muscle makes a relevant contribution in the spectra measured at the largest source-detector distance for thinner subjects related to blood and water absorption. More unexpectedly, also the thin superficial skin layer yields a direct contamination, leading to higher water content and steeper reduced scattering spectra at the shortest distance, as confirmed also by simulations. In conclusion, provided that data analysis properly accounts for the complex tissue structure, diffuse optics may offer great potential for the continuous non-invasive monitoring of abdominal fat

    Transumbilical laparoscopic treatment of Congenital Infantile Fibrosarcoma of the Ileum.

    Get PDF
    Congenital-Infantile Fibrosarcoma (CIF) is a malignant mesenchymal tumor representing 10-20% of soft-tissue tumors. Complete surgical resection is generally the treatment of choice. The most recurrent cytogenetic abnormality was identified as the traslocation t(12;15)(p13:q25), which bears the fusion of Tel gene EVT6 with TrkC gene. This study describes a case of infantile fibrosarcoma of the ileum in a female newborn examined for intestinal occlusion and its laparoscopic treatment

    On coalgebras with internal moves

    Full text link
    In the first part of the paper we recall the coalgebraic approach to handling the so-called invisible transitions that appear in different state-based systems semantics. We claim that these transitions are always part of the unit of a certain monad. Hence, coalgebras with internal moves are exactly coalgebras over a monadic type. The rest of the paper is devoted to supporting our claim by studying two important behavioural equivalences for state-based systems with internal moves, namely: weak bisimulation and trace semantics. We continue our research on weak bisimulations for coalgebras over order enriched monads. The key notions used in this paper and proposed by us in our previous work are the notions of an order saturation monad and a saturator. A saturator operator can be intuitively understood as a reflexive, transitive closure operator. There are two approaches towards defining saturators for coalgebras with internal moves. Here, we give necessary conditions for them to yield the same notion of weak bisimulation. Finally, we propose a definition of trace semantics for coalgebras with silent moves via a uniform fixed point operator. We compare strong and weak bisimilation together with trace semantics for coalgebras with internal steps.Comment: Article: 23 pages, Appendix: 3 page

    Probabilistic Mobility Models for Mobile and Wireless Networks

    Get PDF
    International audienceIn this paper we present a probabilistic broadcast calculus for mobile and wireless networks whose connections are unreliable. In our calculus, broadcasted messages can be lost with a certain probability, and due to mobility the connection probabilities may change. If a network broadcasts a message from a location, it will evolve to a network distribution depending on whether nodes at other locations receive the message or not. Mobility of nodes is not arbitrary but guarded by a probabilistic mobility function (PMF), and we also define the notion of a weak bisimulation given a PMF. It is possible to have weak bisimular networks which have different probabilistic connectivity information. We furthermore examine the relation between our weak bisimulation and a minor variant of PCTL* [1]. Finally, we apply our calculus on a small example called the Zeroconf protocol [2]

    Triglyceride/HDL ratio and its impact on the risk of diabetes mellitus development during ART

    Get PDF
    OBJECTIVES: Our primary aim was to study diabetes mellitus (DM) arising during combination ART (cART) and to attempt to identify associations between these cases and triglycerides (TRG) and the TRG to HDL-cholesterol (TRG/HDL) ratio. Our secondary aim was to analyse the association between DM development and hepatic fibrosis.METHODS: This was a retrospective cohort study. Patients from the Icona Foundation study initiating first-line cART between 1997 and 2013 were selected and observed until new-onset DM or most recent clinical follow-up. The predictive value of TRG and TRG/HDL ratio levels on DM was evaluated using multivariable Poisson regression models.RESULTS: Three-thousand, five-hundred and forty-six patients (males, 73.7%; median age, 38 years; median BMI, 23.1 kg/m(2); and hepatitis C virus antibody positive, 22.1%) were included. Of these, 80 developed DM over 13ā€Š911 person-years of follow-up (PYFU), corresponding to 5.7 cases per 1000 PYFU (95% CIā€Š=ā€Š4.6-7.1). At multivariable analysis, latest TRG/HDL ratio, when high, was associated with significant increases in DM risk [relative risk (RR)ā€Š=ā€Š1.63; 95% CIā€Š=ā€Š1.32-2.01 per 10 points higher], while current TRG, in contrast, was associated with new-onset DM only at crude analysis. Advanced liver fibrosis (defined as fibrosis-4 index >3.25) was also shown to be an independent risk factor for DM (RRā€Š=ā€Š2.91; 95% CIā€Š=ā€Š1.10-7.72).CONCLUSIONS: High TRG/HDL ratio predicted risk of new-onset DM, independently of other traditional risk factors. Furthermore, our findings suggest that advanced hepatic fibrosis, estimated using the fibrosis-4 score, could provide an additional predictor for DM

    Probabilistic Bisimulation: Naturally on Distributions

    Full text link
    In contrast to the usual understanding of probabilistic systems as stochastic processes, recently these systems have also been regarded as transformers of probabilities. In this paper, we give a natural definition of strong bisimulation for probabilistic systems corresponding to this view that treats probability distributions as first-class citizens. Our definition applies in the same way to discrete systems as well as to systems with uncountable state and action spaces. Several examples demonstrate that our definition refines the understanding of behavioural equivalences of probabilistic systems. In particular, it solves a long-standing open problem concerning the representation of memoryless continuous time by memory-full continuous time. Finally, we give algorithms for computing this bisimulation not only for finite but also for classes of uncountably infinite systems

    Mechanism and Uses of a Membrane Peptide that Targets Tumors and Other Acidic Tissues \u3cem\u3eIn Vivo\u3c/em\u3e

    Get PDF
    The pH-selective insertion and folding of a membrane peptide, pHLIP [pH (low) insertion peptide], can be used to target acidic tissue in vivo, including acidic foci in tumors, kidneys, and inflammatory sites. In a mouse breast adenocarcinoma model, fluorescently labeled pHLIP finds solid acidic tumors with high accuracy and accumulates in them even at a very early stage of tumor development. The fluorescence signal is stable for \u3e4 days and is approximately five times higher in tumors than in healthy counterpart tissue. In a rat antigen-induced arthritis model, pHLIP preferentially accumulates in inflammatory foci. pHLIP also maps the renal cortical interstitium; however, kidney accumulation can be reduced significantly by providing mice with bicarbonate-containing drinking water. The peptide has three states: soluble in water, bound to the surface of a membrane, and inserted across the membrane as an Ī±-helix. At physiological pH, the equilibrium is toward water, which explains its low affinity for cells in healthy tissue; at acidic pH, titration of Asp residues shifts the equilibrium toward membrane insertion and tissue accumulation. The replacement of two key Asp residues located in the transmembrane part of pHLIP by Lys or Asn led to the loss of pH-sensitive insertion into membranes of liposomes, red blood cells, and cancer cells in vivo, as well as to the loss of specific accumulation in tumors. pHLIP nanotechnology introduces a new method of detecting, targeting, and possibly treating acidic diseased tissue by using the selective insertion and folding of membrane peptides
    • ā€¦
    corecore