In contrast to the usual understanding of probabilistic systems as stochastic
processes, recently these systems have also been regarded as transformers of
probabilities. In this paper, we give a natural definition of strong
bisimulation for probabilistic systems corresponding to this view that treats
probability distributions as first-class citizens. Our definition applies in
the same way to discrete systems as well as to systems with uncountable state
and action spaces. Several examples demonstrate that our definition refines the
understanding of behavioural equivalences of probabilistic systems. In
particular, it solves a long-standing open problem concerning the
representation of memoryless continuous time by memory-full continuous time.
Finally, we give algorithms for computing this bisimulation not only for finite
but also for classes of uncountably infinite systems