24 research outputs found

    Stimulant treatment history predicts frontal-striatal structural connectivity in adolescents with attention-deficit/hyperactivity disorder

    Get PDF
    Contains fulltext : 168155.pdf (publisher's version ) (Closed access)Diffusion tensor imaging (DTI) has revealed white matter abnormalities in individuals with attention-deficit/hyperactivity disorder (ADHD). Stimulant treatment may affect such abnormalities. The current study investigated associations between long-term stimulant treatment and white matter integrity within the frontal-striatal and mesolimbic pathways, in a large sample of children, adolescents and young adults with ADHD. Participants with ADHD (N=172; mean age 17, range 9-26) underwent diffusion-weighted MRI scanning, along with an age- and gendermatched group of 96 control participants. Five study-specific white matter tract masks (orbitofrontal-striatal, orbitofrontal-amygdalar, amygdalar-striatal, dorsolateral-prefrontal-striatal and medialprefrontal- striatal) were created. First we analyzed case-control differences in fractional anisotropy (FA) and mean diffusivity (MD) within each tract. Second, FA and MD in each tract was predicted from cumulative stimulant intake within the ADHD group. After correction for multiple testing, participants with ADHD showed reduced FA in the orbitofrontal-striatal pathway (p=0.010, effect size=0.269). Within the ADHD group, higher cumulative stimulant intake was associated with lower MD in the same pathway (p=0.011, effect size=-0.164), but not with FA. The association between stimulant treatment and orbitofrontal-striatal MD was of modest effect size. It fell short of significance after adding ADHD severity or ADHD type to the model (p=0.036 and p=0.094, respectively), while the effect size changed little. Our findings are compatible with stimulant treatment enhancing orbitofrontal-striatal white matter connectivity, and emphasize the importance of the orbitofrontal cortex and its connections in ADHD. Longitudinal studies including a drug-naive baseline assessment are needed to distinguish between-subject variability in ADHD severity from treatment effects

    In search of disorders: internalizing symptom networks in a large clinical sample.

    Get PDF
    Background The co‐occurrence of internalizing disorders is a common form of psychiatric comorbidity, raising questions about the boundaries between these diagnostic categories. We employ network psychometrics in order to: (a) determine whether internalizing symptoms cluster in a manner reflecting DSM diagnostic criteria, (b) gauge how distinct these diagnostic clusters are and (c) examine whether this network structure changes from childhood to early and then late adolescence. Method Symptom‐level data were obtained for service users in publicly funded mental health services in England between 2011 and 2015 (N = 37,162). A symptom network (i.e. Gaussian graphical model) was estimated, and a community detection algorithm was used to explore the clustering of symptoms. Results The estimated network was densely connected and characterized by a multitude of weak associations between symptoms. Six communities of symptoms were identified; however, they were weakly demarcated. Two of these communities corresponded to social phobia and panic disorder, and four did not clearly correspond with DSM diagnostic categories. The network structure was largely consistent by sex and across three age groups (8–11, 12–14 and 15–18 years). Symptom connectivity in the two older age groups was significantly greater compared to the youngest group and there were differences in centrality across the age groups, highlighting the age‐specific relevance of certain symptoms. Conclusions These findings clearly demonstrate the interconnected nature of internalizing symptoms, challenging the view that such pathology takes the form of distinct disorders

    Reproducibility in the absence of selective reporting : An illustration from large-scale brain asymmetry research

    Get PDF
    Altres ajuts: Max Planck Society (Germany).The problem of poor reproducibility of scientific findings has received much attention over recent years, in a variety of fields including psychology and neuroscience. The problem has been partly attributed to publication bias and unwanted practices such as p-hacking. Low statistical power in individual studies is also understood to be an important factor. In a recent multisite collaborative study, we mapped brain anatomical left-right asymmetries for regional measures of surface area and cortical thickness, in 99 MRI datasets from around the world, for a total of over 17,000 participants. In the present study, we revisited these hemispheric effects from the perspective of reproducibility. Within each dataset, we considered that an effect had been reproduced when it matched the meta-analytic effect from the 98 other datasets, in terms of effect direction and significance threshold. In this sense, the results within each dataset were viewed as coming from separate studies in an "ideal publishing environment," that is, free from selective reporting and p hacking. We found an average reproducibility rate of 63.2% (SD = 22.9%, min = 22.2%, max = 97.0%). As expected, reproducibility was higher for larger effects and in larger datasets. Reproducibility was not obviously related to the age of participants, scanner field strength, FreeSurfer software version, cortical regional measurement reliability, or regional size. These findings constitute an empirical illustration of reproducibility in the absence of publication bias or p hacking, when assessing realistic biological effects in heterogeneous neuroscience data, and given typically-used sample sizes

    Evidence for similar structural brain anomalies in youth and adult attention-deficit/hyperactivity disorder: a machine learning analysis

    Get PDF
    Attention-deficit/hyperactivity disorder (ADHD) affects 5% of children world-wide. Of these, two-thirds continue to have impairing symptoms of ADHD into adulthood. Although a large literature implicates structural brain differences of the disorder, it is not clear if adults with ADHD have similar neuroanatomical differences as those seen in children with recent reports from the large ENIGMA-ADHD consortium finding structural differences for children but not for adults. This paper uses deep learning neural network classification models to determine if there are neuroanatomical changes in the brains of children with ADHD that are also observed for adult ADHD, and vice versa. We found that structural MRI data can significantly separate ADHD from control participants for both children and adults. Consistent with the prior reports from ENIGMA-ADHD, prediction performance and effect sizes were better for the child than the adult samples. The model trained on adult samples significantly predicted ADHD in the child sample, suggesting that our model learned anatomical features that are common to ADHD in childhood and adulthood. These results support the continuity of ADHD’s brain differences from childhood to adulthood. In addition, our work demonstrates a novel use of neural network classification models to test hypotheses about developmental continuity

    Mapping cortical brain asymmetry in 17,141 healthy individuals worldwide via the ENIGMA Consortium.

    Get PDF
    Hemispheric asymmetry is a cardinal feature of human brain organization. Altered brain asymmetry has also been linked to some cognitive and neuropsychiatric disorders. Here, the ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Consortium presents the largest-ever analysis of cerebral cortical asymmetry and its variability across individuals. Cortical thickness and surface area were assessed in MRI scans of 17,141 healthy individuals from 99 datasets worldwide. Results revealed widespread asymmetries at both hemispheric and regional levels, with a generally thicker cortex but smaller surface area in the left hemisphere relative to the right. Regionally, asymmetries of cortical thickness and/or surface area were found in the inferior frontal gyrus, transverse temporal gyrus, parahippocampal gyrus, and entorhinal cortex. These regions are involved in lateralized functions, including language and visuospatial processing. In addition to population-level asymmetries, variability in brain asymmetry was related to sex, age, and intracranial volume. Interestingly, we did not find significant associations between asymmetries and handedness. Finally, with two independent pedigree datasets (n = 1,443 and 1,113, respectively), we found several asymmetries showing significant, replicable heritability. The structural asymmetries identified and their variabilities and heritability provide a reference resource for future studies on the genetic basis of brain asymmetry and altered laterality in cognitive, neurological, and psychiatric disorders

    Analysis of structural brain asymmetries in attention-deficit/hyperactivity disorder in 39 datasets

    Get PDF
    Objective Some studies have suggested alterations of structural brain asymmetry in attention-deficit/hyperactivity disorder (ADHD), but findings have been contradictory and based on small samples. Here, we performed the largest ever analysis of brain left-right asymmetry in ADHD, using 39 datasets of the ENIGMA consortium. Methods We analyzed asymmetry of subcortical and cerebral cortical structures in up to 1,933 people with ADHD and 1,829 unaffected controls. Asymmetry Indexes (AIs) were calculated per participant for each bilaterally paired measure, and linear mixed effects modeling was applied separately in children, adolescents, adults, and the total sample, to test exhaustively for potential associations of ADHD with structural brain asymmetries. Results There was no evidence for altered caudate nucleus asymmetry in ADHD, in contrast to prior literature. In children, there was less rightward asymmetry of the total hemispheric surface area compared to controls (t = 2.1, p = .04). Lower rightward asymmetry of medial orbitofrontal cortex surface area in ADHD (t = 2.7, p = .01) was similar to a recent finding for autism spectrum disorder. There were also some differences in cortical thickness asymmetry across age groups. In adults with ADHD, globus pallidus asymmetry was altered compared to those without ADHD. However, all effects were small (Cohen’s d from −0.18 to 0.18) and would not survive study-wide correction for multiple testing. Conclusion Prior studies of altered structural brain asymmetry in ADHD were likely underpowered to detect the small effects reported here. Altered structural asymmetry is unlikely to provide a useful biomarker for ADHD, but may provide neurobiological insights into the trait

    Subcortical brain volume, regional cortical thickness, and cortical surface area across disorders: findings from the ENIGMA ADHD, ASD, and OCD Working Groups

    Get PDF
    Objective Attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and obsessive-compulsive disorder (OCD) are common neurodevelopmental disorders that frequently co-occur. We aimed to directly compare all three disorders. The ENIGMA consortium is ideally positioned to investigate structural brain alterations across these disorders. Methods Structural T1-weighted whole-brain MRI of controls (n=5,827) and patients with ADHD (n=2,271), ASD (n=1,777), and OCD (n=2,323) from 151 cohorts worldwide were analyzed using standardized processing protocols. We examined subcortical volume, cortical thickness and surface area differences within a mega-analytical framework, pooling measures extracted from each cohort. Analyses were performed separately for children, adolescents, and adults using linear mixed-effects models adjusting for age, sex and site (and ICV for subcortical and surface area measures). Results We found no shared alterations among all three disorders, while shared alterations between any two disorders did not survive multiple comparisons correction. Children with ADHD compared to those with OCD had smaller hippocampal volumes, possibly influenced by IQ. Children and adolescents with ADHD also had smaller ICV than controls and those with OCD or ASD. Adults with ASD showed thicker frontal cortices compared to adult controls and other clinical groups. No OCD-specific alterations across different age-groups and surface area alterations among all disorders in childhood and adulthood were observed. Conclusion Our findings suggest robust but subtle alterations across different age-groups among ADHD, ASD, and OCD. ADHD-specific ICV and hippocampal alterations in children and adolescents, and ASD-specific cortical thickness alterations in the frontal cortex in adults support previous work emphasizing neurodevelopmental alterations in these disorders

    Combined stimulant and antipsychotic treatment in adolescents with attention-deficit/hyperactivity disorder:a cross-sectional observational structural MRI study

    Get PDF
    Meta-analyses suggest normalizing effects of methylphenidate on structural fronto-striatal abnormalities in patients with attention-deficit/hyperactivity disorder (ADHD). A subgroup of patients receives atypical antipsychotics concurrent with methylphenidate. Long-term safety and efficacy of combined treatment are unknown. The current study provides an initial investigation of structural brain correlates of combined methylphenidate and antipsychotic treatment in patients with ADHD. Structural magnetic resonance imaging was obtained in 31 patients who had received combined methylphenidate and antipsychotic treatment, 31 matched patients who had received methylphenidate but not antipsychotics, and 31 healthy controls (M age 16.7 years). We analyzed between-group effects in total cortical and subcortical volume, and in seven frontal cortical and eight subcortical-limbic volumes of interest, each involved in dopaminergic neurotransmission. Patients in the combined treatment group, but not those in the methylphenidate only group, showed a reduction in total cortical volume compared to healthy controls (Cohen's d = 0.69, p <0.004), which was apparent in most frontal volumes of interest. Further, the combined treatment group, but not the methylphenidate group, showed volume reduction in bilateral ventral diencephalon (Left Cohen's d = 0.48, p <0.04; Right Cohen's d = 0.46, p <0.05) and the left thalamus (Cohen's d = 0.47, p <0.04). These findings may indicate antipsychotic treatment counteracting the normalizing effects of methylphenidate on brain structure. However, it cannot be ruled out that pre-existing clinical differences between both patient groups may have resulted in anatomical differences at the time of scanning. The absence of an untreated ADHD group hinders unequivocal interpretation and implications of our findings

    The Course of Neurocognitive Functioning and Prediction of Behavioral Outcome of ADHD Affected and Unaffected Siblings

    Get PDF
    Longitudinal studies on the course of neurocognitive functioning of children with ADHD and their unaffected siblings are scarce. Also, it is unclear to what extent that course is related to ADHD outcomes. A carefully phenotyped large sample of 838 Caucasian participants (ADHD-combined type: n = 339, unaffected siblings: n = 271, controls: n = 228; mean age at baseline = 11.4 years, mean age at follow-up = 17.3 years, SD = 3.2) was used to investigate differences in the course of neurocognitive functioning of ADHD affected and unaffected siblings versus controls, and to investigate the relationship between neurocognitive change and ADHD outcomes. At baseline, an aggregated measure of overall neurocognitive functioning and eight neurocognitive measures of working memory, timing (speed/variability), motor control, and intelligence were investigated. Outcomes at follow-up were dimensional measures of ADHD symptom severity and the Kiddie-Global Assessment Scale (K-GAS) for overall functioning. At follow up, affected and unaffected siblings trended to, or fully caught up with performance levels of controls on four (44.4%) and five (55.6%) of the nine dependent variables, respectively. In contrast, performance in remaining key neurocognitive measures (i.e. verbal working memory, variability in responding) remained impaired at follow-up. Change in neurocognitive functioning was not related to ADHD outcomes. Our results question the etiological link between neurocognitive deficits and ADHD outcomes in adolescents and young adults
    corecore