404 research outputs found

    Search for Third Generation Vector Leptoquarks in p anti-p Collisions at sqrt(s) = 1.96 TeV

    Get PDF
    We describe a search for a third generation vector leptoquark (VLQ3) that decays to a b quark and tau lepton using the CDF II detector and 322 pb^(-1) of integrated luminosity from the Fermilab Tevatron. Vector leptoquarks have been proposed in many extensions of the standard model (SM). Observing a number of events in agreement with SM expectations, assuming Yang-Mills (minimal) couplings, we obtain the most stringent upper limit on the VLQ3 pair production cross section of 344 fb (493 fb) and lower limit on the VLQ3 mass of 317 GeV/c^2 (251 GeV/c^2) at 95% C.L.Comment: 7 pages, 2 figures, submitted to PR

    High-field high-repetition-rate sources for the coherent THz control of matter

    Get PDF
    Ultrashort flashes of THz light with low photon energies of a few meV, but strong electric or magnetic field transients have recently been employed to prepare various fascinating nonequilibrium states in matter. Here we present a new class of sources based on superradiant enhancement of radiation from relativistic electron bunches in a compact electron accelerator that we believe will revolutionize experiments in this field. Our prototype source generates high-field THz pulses at unprecedented quasicontinuous-wave repetition rates up to the MHz regime. We demonstrate parameters that exceed state-of-the-art laser-based sources by more than 2 orders of magnitude. The peak fields and the repetition rates are highly scalable and once fully operational this type of sources will routinely provide 1 MV/cm electric fields and 0.3 T magnetic fields at repetition rates of few 100 kHz. We benchmark the unique properties by performing a resonant coherent THz control experiment with few 10 fs resolution

    Dead layer on silicon p–i–n diode charged-particle detectors

    Get PDF
    Semiconductor detectors in general have a dead layer at their surfaces that is either a result of natural or induced passivation, or is formed during the process of making a contact. Charged particles passing through this region produce ionization that is incompletely collected and recorded, which leads to departures from the ideal in both energy deposition and resolution. The silicon p-i-n diode used in the KATRIN neutrinomass experiment has such a dead layer. We have constructed a detailed Monte Carlo model for the passage of electrons from vacuum into a silicon detector, and compared the measured energy spectra to the predicted ones for a range of energies from 12 to 20 keV. The comparison provides experimental evidence that a substantial fraction of the ionization produced in the "dead" layer evidently escapes by diffusion, with 46% being collected in the depletion zone and the balance being neutralized at the contact or by bulk recombination. The most elementary model of a thinner dead layer from which no charge is collected is strongly disfavored

    Physical Processes in Star Formation

    Get PDF
    © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00693-8.Star formation is a complex multi-scale phenomenon that is of significant importance for astrophysics in general. Stars and star formation are key pillars in observational astronomy from local star forming regions in the Milky Way up to high-redshift galaxies. From a theoretical perspective, star formation and feedback processes (radiation, winds, and supernovae) play a pivotal role in advancing our understanding of the physical processes at work, both individually and of their interactions. In this review we will give an overview of the main processes that are important for the understanding of star formation. We start with an observationally motivated view on star formation from a global perspective and outline the general paradigm of the life-cycle of molecular clouds, in which star formation is the key process to close the cycle. After that we focus on the thermal and chemical aspects in star forming regions, discuss turbulence and magnetic fields as well as gravitational forces. Finally, we review the most important stellar feedback mechanisms.Peer reviewedFinal Accepted Versio

    The design, construction, and commissioning of the KATRIN experiment

    Get PDF
    The KArlsruhe TRItium Neutrino (KATRIN) experiment, which aims to make a direct and model-independent determination of the absolute neutrino mass scale, is a complex experiment with many components. More than 15 years ago, we published a technical design report (TDR) [1] to describe the hardware design and requirements to achieve our sensitivity goal of 0.2 eV at 90% C.L. on the neutrino mass. Since then there has been considerable progress, culminating in the publication of first neutrino mass results with the entire beamline operating [2]. In this paper, we document the current state of all completed beamline components (as of the first neutrino mass measurement campaign), demonstrate our ability to reliably and stably control them over long times, and present details on their respective commissioning campaigns

    Search for Maximal Flavor Violating Scalars in Same-Charge Lepton Pairs in pp̅ Collisions at √s=1.96  TeV

    Get PDF
    Models of Maximal Flavor Violation (MxFV) in elementary particle physics may contain at least one new scalar SU(2)(2) doublet field ΦFV=(η0,η+)\Phi_{FV} = (\eta^0,\eta^+) that couples the first and third generation quarks (q1,q3q_1,q_3) via a Lagrangian term LFV=ξ13ΦFVq1q3\mathcal{L}_{FV} = \xi_{13} \Phi_{FV} q_1 q_3. These models have a distinctive signature of same-charge top-quark pairs and evade flavor-changing limits from meson mixing measurements. Data corresponding to 2 fb1^{-1} collected by the CDF II detector in ppˉp\bar{p} collisions at s=1.96\sqrt{s} = 1.96 TeV are analyzed for evidence of the MxFV signature. For a neutral scalar η0\eta^0 with mη0=200m_{\eta^0} = 200 GeV/c2c^2 and coupling ξ13=1\xi_{13}=1, \sim 11 signal events are expected over a background of 2.1±1.82.1 \pm 1.8 events. Three events are observed in the data, consistent with background expectations, and limits are set on the coupling ξ13\xi_{13} for mη0=180300m_{\eta^0} = 180-300 GeV/c2c^2.Models of maximal flavor violation (MxFV) in elementary particle physics may contain at least one new scalar SU(2) doublet field ΦFV=(η0,η+) that couples the first and third generation quarks (q1, q3) via a Lagrangian term LFV=ξ13ΦFVq1q3. These models have a distinctive signature of same-charge top-quark pairs and evade flavor-changing limits from meson mixing measurements. Data corresponding to 2  fb-1 collected by the Collider Dectector at Fermilab II detector in pp̅ collisions at √s=1.96  TeV are analyzed for evidence of the MxFV signature. For a neutral scalar η0 with mη0=200  GeV/c2 and coupling ξ13=1, ~11 signal events are expected over a background of 2.1±1.8 events. Three events are observed in the data, consistent with background expectations, and limits are set on the coupling ξ13 for mη0=180–300  GeV/c2.Peer reviewe

    Identification of regulatory variants associated with genetic susceptibility to meningococcal disease

    Get PDF
    Non-coding genetic variants play an important role in driving susceptibility to complex diseases but their characterization remains challenging. Here, we employed a novel approach to interrogate the genetic risk of such polymorphisms in a more systematic way by targeting specific regulatory regions relevant for the phenotype studied. We applied this method to meningococcal disease susceptibility, using the DNA binding pattern of RELA - a NF-kB subunit, master regulator of the response to infection - under bacterial stimuli in nasopharyngeal epithelial cells. We designed a custom panel to cover these RELA binding sites and used it for targeted sequencing in cases and controls. Variant calling and association analysis were performed followed by validation of candidate polymorphisms by genotyping in three independent cohorts. We identified two new polymorphisms, rs4823231 and rs11913168, showing signs of association with meningococcal disease susceptibility. In addition, using our genomic data as well as publicly available resources, we found evidences for these SNPs to have potential regulatory effects on ATXN10 and LIF genes respectively. The variants and related candidate genes are relevant for infectious diseases and may have important contribution for meningococcal disease pathology. Finally, we described a novel genetic association approach that could be applied to other phenotypes

    Search for Supersymmetry with Gauge-Mediated Breaking in Diphoton Events with Missing Transverse Energy at CDF II

    Get PDF
    accepted to Phys. Rev. LettWe present the results of a search for supersymmetry with gauge-mediated breaking and \NONE\to\gamma\Gravitino in the γγ\gamma\gamma+missing transverse energy final state. In 2.6±\pm0.2 \invfb of ppˉp{\bar p} collisions at s\sqrt{s}==1.96 TeV recorded by the CDF II detector we observe no candidate events, consistent with a standard model background expectation of 1.4±\pm0.4 events. We set limits on the cross section at the 95% C.L. and place the world's best limit of 149\gevc on the \none mass at τχ~10\tau_{\tilde{\chi}_1^0}$We present the results of a search for supersymmetry with gauge-mediated breaking and χ˜10→γG˜ in the γγ+missing transverse energy final state. In 2.6±0.2  fb-1 of pp̅ collisions at √s=1.96  TeV recorded by the CDF II detector we observe no candidate events, consistent with a standard model background expectation of 1.4±0.4 events. We set limits on the cross section at the 95% C.L. and place the world’s best limit of 149  GeV/c2 on the χ˜10 mass at τχ˜10≪1  ns. We also exclude regions in the χ˜10 mass-lifetime plane for τχ˜10≲2  ns.Peer reviewe

    Measurements of branching fraction ratios and CP asymmetries in B+/- ->D_CP K+/- decays in hadron collisions

    Get PDF
    We reconstruct B+/- -> D K+/- decays in a data sample collected by the CDF II detector at the Tevatron collider corresponding to 1 fb-1 of integrated luminosity. We select decay modes where the D meson decays to either K- pi+ (flavor eigenstate) or K- K+, pi- pi+ (CP-even eigenstates), and measure the direct CP asymmetry A_CP+ = 0.39 +/- 0.17(stat) +/- 0.04(syst), and the double ratio of CP-even to flavor eigenstate branching fractions R_CP+ = 1.30 +/- 0.24(stat) +/- 0.12(syst). These measurements will improve the determination of the CKM angle gamma. They are performed here for the first time using data from hadron collisions.We reconstruct B±→DK± decays in a data sample collected by the CDF II detector at the Tevatron collider corresponding to 1  fb-1 of integrated luminosity. We select decay modes where the D meson decays to either K-π+ (flavor eigenstate) or K-K+, π-π+ (CP-even eigenstates), and measure the direct CP asymmetry ACP+=0.39±0.17(stat)±0.04(syst), and the double ratio of CP-even to flavor eigenstate branching fractions RCP+=1.30±0.24(stat)±0.12(syst). These measurements will improve the determination of the Cabibbo-Kobayashi-Maskawa angle γ. They are performed here for the first time using data from hadron collisions.Peer reviewe
    corecore