40 research outputs found

    Carbon fibre composites: integrated electrochemical sensors for wound management

    Get PDF
    The applicability of employing a carbon fibre mesh as an electrochemical sensing substructure for assessing urate transformations within wound exudates is evaluated. Prototype sensor assemblies have been designed and their response characteristics towards uric acid and other common physiological components are detailed. Modification of the carbon fibre sensor through surface anodisation and the application of cellulose acetate permselective barriers have been shown to lead to optimized responses and much greater sensitivity (1440% increase) and specificity. These could enable the accurate periodic monitoring of uric acid in wound fluid. The performance characteristics of the composite sensors in whole blood, serum and blister fluid have been investigated

    Horseradish and soybean peroxidases: comparable tools for alternative niches?

    Get PDF
    Horseradish and soybean peroxidases (HRP and SBP, respectively) are useful biotechnological tools. HRP is often termed the classical plant heme peroxidase and although it has been studied for decades, our understanding has deepened since its cloning and subsequent expression, enabling numerous mutational and protein engineering studies. SBP, however, has been neglected until recently, despite offering a real alternative to HRP: SBP actually outperforms HRP in terms of stability and is now used in numerous biotechnological applications, including biosensors. Review of both is timely. This article summarizes and discusses the main insights into the structure and mechanism of HRP, with special emphasis on HRP mutagenesis, and outlines its use in a variety of applications. It also reviews the current knowledge and applications to date of SBP, particularly biosensors. The final paragraphs speculate on the future of plant heme-based peroxidases, with probable trends outlined and explored

    Development of a novel reagentless, screen-printed amperometric biosensor based on glutamate dehydrogenase and NAD+, integrated with multi-walled carbon nanotubes for the determination of glutamate in food and clinical applications

    Get PDF
    © 2015 Elsevier B.V. Abstract A screen printed carbon electrode (SPCE) containing the electrocatalyst Meldola's Blue (MB) has been investigated as the base transducer for a reagentless glutamate biosensor. The biopolymer chitosan (CHIT) and multiwalled carbon nanotubes (MWCNTs) were used to encapsulate the enzyme glutamate dehydrogenase (GLDH) and the co-factor nicotinamide adenine dinucleotide (NAD+). The biosensor was fabricated by sequentially depositing the components on the surface of the transducer (MB-SPCE) in a layer-by-layer process, details of which are included in the paper. Each layer was optimised to construct the reagentless device. The biosensor was used in conjunction with amperometry in stirred solution using an applied potential of +0.1 V (vs. Ag/AgCl). Optimum conditions for the analysis of glutamate were found to be: temperature, 35°C; phosphate buffer, pH 7 (0.75 mM, containing 0.05 M NaCl). The linear range of the reagentless biosensor was found to be 7.5-105 μM, and limit of detection was found to be 3 μM (based on n = 5, CV: 8.5% based on three times signal to noise) and the sensitivity was 0.39 nA/μM (±0.025, coefficient of variation (CV) of 6.37%, n = 5). The response time of the biosensor was 20-30 s. A food sample was analysed for monosodium glutamate (MSG). The endogenous content of MSG was 90.56 mg/g with a CV of 7.52%. The reagentless biosensor was also used to measure glutamate in serum. The endogenous concentration of glutamate was found to be 1.44 mM (n = 5), CV: 8.54%. The recovery of glutamate in fortified serum was 104% (n = 5), CV of 2.91%

    Mise au point de biocapteurs pour la détection spécifique in vivo de divers messgers biologiques et substances (glutamate, acétylcholine, D-Serine, glucose, lactacte, etc.)

    No full text
    Les recherches sont focalisées sur l'élaboration de dispositifs micro-enzymatiques permettant la détection in vivo de divers messagers. Le document comprend : une introduction générale ; une revue bibliographique ; un premier chapître décrivant les améliorations apportées à la fabrication du transducteur de base possédant une partie active en fibre de carbone ; un deuxième chapître consacré à l'élaboration des microbiocapteurs permettant la détection de la choline et de l'acétylcholine ; un troisième chapître examinant la possibilité de fabriquer des microbiocapteurs ampérométriques en combinant l'électrométalisation de la fibre de carbone et l'électropolymérisation d'un film de phenylenediamine pour une fixation covalente des enzymes ; un quatrième chapître dévoué à la préparation du microbiocapteur pour la D-serine ; une conclusion générale sur les améliorations apportées à la technologie des microbiocapteursLYON1-BU.Sciences (692662101) / SudocSudocFranceF

    Ultramicrobiosensor for the selective detection of glutamate

    No full text
    Carbon fiber microelectrodes, able to detect catecholamine release from single cells, have significantly contributed to our present understanding of the mechanism of secretory neurotransmission. In spite of their obvious advantages, there are only a few amperometric sensors (characterized by appropriate size, sensitivity, and selectivity) able to measure the release of other (not easily oxidizable) neurotransmitters at cellular level. The present work describes the fabrication and characterization of an ultramicrobiosensor for the selective detection of glutamate. ne developed sensor has a size of 2.5 - 15 mu m in diameter, a sensitivity of 0.62 mA mM(-1) cm(-2), and a detection limit of 5 mu M. The excellent selectivity of the sensor (achieved using electrodeposition of Ru, Rh, and poly(m-phenylenediamine)) makes it a promising candidate for monitoring glutamate release at single cell level

    Carbon fibre-based microbiosensors for in vivo measurements of acetylcholine and choline

    No full text
    This report describes technical improvements to the manufacture of a carbon fibre electrode for the stable and sensitive detection of H2O2 (detection limit at 0.5 mu M). This electrode was also modified through the co-immobilisation of acetylcholinesterase (AChE) and/or choline oxidase (ChOx) in a bovine serum albumin (BSA) membrane for the development of a sensor for in vivo measurements of acetylcholine and choline. Amperometric measurements were performed using a conventional three-electrode system forming part of a flow-injection set-up at an applied potential of 800-1100 mV relative to an Ag/AgCl reference electrode. The optimised biosensor obtained was reproducible and stable, and exhibited a detection limit of 1 mu M for both acetylcholine and choline. However, due to the high operating potential used, the biosensor was prone to substantial interference from other electroactive compounds, such as ascorbic acid. Therefore, in a further step, a mediated electron transfer approach was used that incorporated horseradish peroxidase into an osmium-based redox hydrogel layered into the active surface of the electrode. Afterwards, a Nafion layer and a coating containing AChE and/or ChOx co-immobilised in a BSA membrane were successively deposited. This procedure further increased the selectivity of the biosensor, when operated in the same flow-injection system but at an applied potential of -50 mV relative to an Ag/AgCl reference electrode. The sensor exhibited good selectivity and a high sensitivity over a concentration range (0.3-100 mu M) suitable for the measurement of choline and acetylcholine in vivo. (c) 2004 Elsevier B.V. All rights reserved

    Characterization of a Yeast d-Amino Acid Oxidase Microbiosensor for d-Serine Detection in the Central Nervous System.

    No full text
    International audienced-Serine is an endogenous ligand for N-methyl-d-aspartate (NMDA) receptors, and alterations in its concentration have been related to several brain disorders, especially schizophrenia. It is therefore an important target neuromodulator for the pharmaceutical industry. To monitor d-serine levels in vivo, we have developed a microbiosensor based on cylindrical platinum microelectrodes, covered with a membrane of poly-m-phenylenediamine (PPD) and a layer of immobilized d-amino acid oxidase from the yeast Rhodotorula gracilis (RgDAAO). By detecting the hydrogen peroxide produced by enzymatic degradation of d-serine, this microbiosensor shows a detection limit of 16 nM and a mean response time of 2 s. Interferences by ascorbic acid, uric acid, l-cysteine, and by biogenic amines and their metabolites are rejected at more than 97% by the PPD layer. Although several d-amino acids are potential substrates for RgDAAO, d-serine was the only endogenous substrate present in sufficient concentration to be detected by our microbiosensor in the central nervous system. When implanted in the cortex of anesthetized rats, this microbiosensor detected the increase in concentration of d-serine resulting from its diffusion across the blood-brain barrier after an intraperitoneal injection. This new device will make it possible to investigate in vivo the variations in d-serine concentrations occurring under normal and pathological conditions and to assess the pharmacological potency of new drugs designed to impact d-serine metabolism
    corecore