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ABSTRACT

D-serine is an endogenous ligand for N-methyl D-aspartate (NMDA) receptors and alterations in 

its concentration have been related to several brain disorders, especially schizophrenia. It is 

therefore an important target neuromodulator for the pharmaceutical industry. To monitor D-

serine levels in vivo, we have developed a microbiosensor based on cylindrical platinum 

microelectrodes, covered with a membrane of poly-m-phenylenediamine (PPD), and a layer of 

immobilized D-amino acid oxidase from the yeast Rhodotorula gracilis (RgDAAO). By detecting 

the hydrogen peroxide produced by enzymatic degradation of D-serine, this microbiosensor 

shows a detection limit of 16 nM and a mean response time of 2 s. Interferences by ascorbic acid, 

uric acid, L-cysteine and by biogenic amines and their metabolites  are rejected at more than 97% 

by the PPD layer. Although several D-amino acids are potential substrates for RgDAAO, D-

serine was the only endogenous substrate present in sufficient concentration to be detected by our 

microbiosensor in the central nervous system. When implanted in the cortex of anesthetized rats, 

this microbiosensor detected the increase in concentration of D-serine resulting from its diffusion 

across the blood brain barrier after an intraperitoneal injection. This new device will make it 

possible to investigate in vivo the variations in D-serine concentrations occurring under normal 

and pathological conditions, and to assess the pharmacological potency of new drugs designed to 

impact D-serine metabolism.
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Alterations in brain concentrations of D-serine, the predominant D-amino acid in the 

mammalian central nervous system1, have been recently related to several neurological and 

psychiatric diseases2. D-serine is synthesized in glial cells3 and neurons4, 5, through the 

racemization of L-serine by serine racemase3. It is released by astrocytes in response to chemical 

stimulation by glutamate, or glutamate receptor agonists such as α-amino-3-hydroxy-5-

methylisoxazole-4-propionate (AMPA), kainic acid, or (1S,3R)-1-aminocyclopentane-1,3-

dicarboxylic acid (t-ACPD)6, 7. D-serine is an endogenous agonist of the glycine site of the N-

methyl-D-aspartate (NMDA) receptors8, and plays important roles in synaptic plasticity9, 10 and in 

several neurological and psychiatric disorders, such as schizophrenia11, 12, ischemia13,

Alzheimer’s disease14 and amyotrophic lateral sclerosis15. In particular, D-serine concentration is 

decreased in the cerebrospinal fluid of schizophrenic patients16, 17, and its administration 

enhances the therapeutic effects of known antipsychotic drugs18, 19. Notwithstanding the 

physiological importance of D-serine in these diseases, the variations in D-serine levels in the 

central nervous system (CNS) during behavior or pathological states remain largely unexplored. 

Also, the biochemical and cellular mechanisms controlling D-serine extracellular brain 

concentration are still elusive. To elucidate these important questions, the development of rapid 

and selective methods for monitoring D-serine dynamics in the brain is of paramount importance. 

Detection of free D-serine in the CNS has been reported using microdialysis20-23. Despite 

its impressive analytical power, microdialysis is limited by the large size of the probes used to 

collect brain samples and by the slow diffusion of molecules through the dialysis membrane. In 

particular, implantation of microdialysis probes into the CNS often causes lesions that impair the 
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physiological processes taking place around the probe24-26. Moreover, microdialysis probes are 

too large to be inserted into brain slices or small structures of the rat or mouse CNS. 

To overcome these technical limitations, we developed an enzymatic microbiosensor 

capable of detecting D-serine in vivo. Enzymatic biosensors have been used for monitoring 

extracellular levels of neurotransmitters like glutamate27-31, adenosine32, adenosine tri-

phosphate33, choline34, 35, acetylcholine36-38, as well as metabolic molecules like glucose39 or 

lactate40. Moreover, D-amino acids (including D-serine) can be detected in food or beverages as 

markers of bacterial proliferation, using biosensors coated with the enzyme D-amino acid oxidase

(DAAO)41-44. However, these biosensors are too large to be inserted into the CNS of laboratory 

animals, and do not reach a sufficient detection limit to monitor physiological D-serine 

concentrations in the low micromolar range21. In this study, we sought to optimize this principle 

to achieve successful electrochemical D-serine detection in the brain.

Our microbiosensor is based on a platinum microelectrode (25×150 µm) covered with a 

membrane of poly-m-phenylenediamine (PPD) for selectivity, and with a layer of D-amino acid 

oxidase purified from the yeast Rhodotorula gracilis (RgDAAO). This microbiosensor detects D-

serine with an in vitro detection limit of 16 nM and a mean response time of 2.3 s. When used in 

the brain or in brain extracts, it is selective for D-serine over other endogenous amino acids or 

oxidizable molecules. Moreover, this microbiosensor can detect the basal D-serine extracellular 

concentration in the rat frontal cortex (3.1 µM) and D-serine diffusion through the blood brain 

barrier following an intraperitoneal injection. Parts of this study have been published in abstract 

form45.
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EXPERIMENTAL SECTION

Preparation of the enzyme

Recombinant R. gracilis D-amino acid oxidase (RgDAAO, EC 1.4.3.3) was 

overexpressed in E. coli  and purified as reported by Molla et al.46. The final enzyme preparation 

had a specific activity of 55 U/mg protein on D-serine, and was concentrated up to 58 mg/ml of 

RgDAAO in a solution containing 25 mg/ml bovine serum albumin (BSA, Sigma, St-Quentin 

Fallavier, France) and glycerol (1%) in phosphate buffer (0.02 M, pH 8.5). Pig kidney DAAO 

was purchased from Sigma and prepared following the same protocol as RgDAAO.

Microbiosensor Preparation

Biosensors were constituted of a 25 µm diameter 90% Pt / 10% Ir wire (Goodfellow, 

Huntington, UK) glued to a 0.3 mm copper wire using electroconductive silver paint 

(Radiospares, Beauvais, France). It was then inserted into a pulled glass capillary (Harvard 

Apparatus, Edenbridge, UK) and the tip of the pipette was cut to let 150 µm of the platinum wire

protrude out of the glass. The junction between the platinum wire and the glass micropipette was 

sealed with epoxy resin (Araldite®, Bostik, Paris, France). The electrodes were then washed for

30 min in KOH 0.5 M and 20 min in ethanol. A PPD layer was electrodeposited by dipping the 

electrodes 20 minutes in a solution containing 100 mM m-phenylenediamine in PBS 0.01 M at 

pH 7.4 under a constant potential of +700 mV vs. an Ag/AgCl reference electrode. The enzyme 

layer was deposited by dipping the Pt tip of the electrodes in the DAAO solution (see above). 

Control microbiosensors (i.e. without DAAO) were produced by dipping the electrode in a 
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solution of BSA (400 mg/ml) in phosphate buffered saline (PBS) 0.01 M, pH 7.4 and 1% 

glycerol. The enzyme was immobilized under saturated glutaraldehyde vapors for 120-135 s by 

placing the electrodes into a small chamber containing a few milliliters of a 50 % glutaraldehyde 

solution (under a fume hood because of the toxicity of glutaraldehyde vapors). Electrodes were 

then kept at -20°C in dry atmosphere for long-term storage.

All microbiosensors were tested for the detection of serotonin (5-HT, 20 µM in PBS), D-

serine (1 µM in PBS) and H2O2 (1 µM in PBS) before use. Only the electrodes showing more 

than 7 pA/µM D-serine and less than 4 pA/20 µM 5-HT were included in this study. To 

determine this threshold, we tested a total of 30 electrodes: D-serine sensitivity was 9.2 ± 3.4 

pA/µM and 16.7% were excluded using these criteria. 

Microbiosensors used for in vivo experiments were covered with an additional Nafion 

membrane, to protect the enzyme layer during penetration into the brain. The tip of the electrode 

was dipped 5 times in Nafion 1% (5% commercial solution from Aldrich, Saint Quentin 

Fallavier, France, diluted in isopropanol) and allowed to dry for at least 10 minutes at room 

temperature31, 34. This additional membrane did not change the sensitivity or the response time of 

the electrodes.

Recordings

All recordings were made either with a patch-clamp amplifier Geneclamp GC500 

(Molecular Devices, Sunnyvale, CA) or with an electrochemistry amplifier VA-10 (NPI 

Electronics, Tamm, Germany) used with a 2 electrode potentiostat. Data acquisition was 

performed with an ITC-18 acquisition board (Instrutech, Port Washington, NY) driven with a 

homemade software based on Igor Pro 5.0 procedures (Wavemetrics, Eugene, OR). The 
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oxidation current was sampled at 1 kHz and averaged over 1000 data points, yielding a final 

sampling frequency of 1 Hz.

In vitro calibrations were performed in standard solutions prepared with phosphate 

buffered saline (0.01 M, pH 7.4). The reference electrode was a chlorided silver wire placed 

directly into the recording chamber. Recordings were made in constant potential amperometry at 

500 mV vs. the Ag/AgCl reference electrode. Calibration of the biosensors before and after in 

vivo experiments was performed in an artificial extracellular medium containing (in mM): NaCl 

126, KCl 1.5, KH2PO4 1.25, MgSO4 1.5, CaCl2 2 and HEPES 10 (pH 7.4). All chemicals were 

purchased from Sigma-Aldrich (Saint-Quentin Fallavier, France).

Preparation of brain samples

Male Wistar rats (300-400 g) were decapitated under isofurane anesthesia, and the 

forebrain was removed and homogenized in 5 ml of 5% trichloroacetic acid (TCA) to precipitate 

macromolecules. The homogenate was then centrifuged at 20 000 g for 10 min. TCA was 

extracted 6 times from the supernatant using ether, before lyophilization and storage at -20°C.

High pressure liquid chromatography (HPLC) measurements

Lyophilized brain extracts (40 mg) were dissolved in 1 ml deionized water, and 50 µl 

aliquots were treated with 0.8 mg N-acetyl-cysteine and 0.25 mg o-phthaldialdehyde in a 0.1M 

borate buffer, pH 10.4, for derivatization of amino acids. HPLC measurements were performed 

using a Waters Alliance instrument (Waters Corporation, Guyancourt, France) with a Waters 

symmetry column (4.6×250mm). The column and sample compartments were kept at 30 and 8°C 

respectively. Flow rate was set at 1 ml/min and run time was 20 min for all analyses. L- and D-
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serine were eluted with an isocratic method using phase A (990 ml of 0.1 M sodium acetate and 

10 ml tetrahydrofurane, pH 6.2); the column was washed using phase B (500 ml of 0.1 M sodium 

acetate, 470 ml acetonitrile, 30 ml tetrahydrofurane, pH 6.2). Amino acid derivatives were 

detected using a Waters fluorescence detector (excitation 344 nm, emission 443 nm), and data 

were acquired using the Empower Pro software package (Waters Corporation, Guyancourt, 

France). Calibration of D-serine detection was performed using a 7-point standard curve.

In vivo experiments

Rats were anesthetized with a ketamine-xylazine mixture (42 mg/ml ketamine, 1,6 mg/ml

xylazine, purchased from Centravet, Plancoët, France, and injected at 0.2 ml/100 g body weight) 

and placed in a stereotaxic apparatus (Stoelting Corporation, Wood Dale, IL). Body temperature 

was kept at 37°C with a homeothermic blanket (LSI Letica, Barcelona, Spain). An active 

RgDAAO biosensor was implanted in the frontal cortex (1 mm lateral from the midline, 3 mm 

anterior from the bregma, 1.5 mm ventral from the dura), side by side (0.5 mm) with a control

biosensor covered with BSA. Both microbiosensors were covered with an additional Nafion 

layer. Before to start the recording, currents were allowed to stabilize for at least 30 min. D-serine 

1g/kg body weight was injected intraperitoneally after an additional 30 min period of control 

recording. In order to determine their selectivity and sensitivity, both biosensors were calibrated 

using 5-HT 20 µM and D-serine 1 µM dissolved in an artificial extracellular medium (see above) 

before and after the in vivo experiment.

Statistics
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9

Data are expressed as mean ± standard deviation (SD) except for in vivo or brain extracts 

measurements, where we used mean ± standard error of the mean (SEM). Comparisons between 

two data groups were performed using the Student's t-test for equal or unequal variances, as 

determined by the F-test (significance level was p<0.05). Statistics software was the analysis 

tool-pack of Excel (Microsoft Office XP).
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RESULTS AND DISCUSSION

Principle of D-serine detection by the biosensor

D-serine detection was achieved by a two-step reaction using the enzyme DAAO: (1) 

DAAO converts D-amino acids into their corresponding α-ketoacids (hydroxypyruvate for D-

serine) and generates equimolar amounts of H2O2; (2) H2O2 is oxidized at the surface of a 

platinum wire connected to a patch-clamp amplifier (Fig 1). The resulting H2O2 oxidation current 

corresponds to the D-serine concentration in the biosensor’s microenvironment.

To optimize H2O2 detection by the microbiosensor, we generated cyclic voltammograms 

in a solution of H2O2 100 µM in PBS 0.01 M pH 7.4, using potential sweeps from 0 mV to 900 

mV vs. Ag/AgCl reference electrode. As described by other authors47, 48, holding potentials 

around 0 mV gave rise to electrochemical reduction of H2O2, whereas oxidation was achieved 

above +200 mV. Optimal H2O2 detection was performed at a holding potential of +500 mV vs. 

Ag/AgCl reference electrode, at which background currents were kept minimal. This value falls 

in the +500 mV and +700 mV range vs. Ag/AgCl reference electrode typically used for platinum 

wire enzymatic biosensors27, 33, 49, 50.

Choice of the DAAO

The most commonly used and commercially available DAAO is the one isolated from pig 

kidney (pkDAAO). Several biosensors for D-amino acids detection in food samples have been 

successfully prepared using pkDAAO41-44. However, these biosensors achieved detection limits 

in the 10-5-10-4 M range, which is not sufficient for detecting D-serine extracellular concentration 
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in the CNS, estimated at a few 10-6M20-22. This low sensitivity to D-amino acids might be due to 

the low specific activity of pkDAAO used for these biosensors. However, the DAAO from the 

yeast Rhodotorula gracilis shows better properties for biotechnological applications. It binds the 

flavin adenine dinucleotide (FAD) cofactor with high affinity and shows a higher specific activity 

and stability compared to its mammalian counterpart51.

We thus compared the sensitivity and selectivity of microbiosensors prepared with either 

pkDAAO or RgDAAO. Sensitivity for D-serine was 42% higher with RgDAAO microbiosensors 

than with pkDAAO ones: 9.2 ± 3.4 pA/µM (n=30) vs. 6.5 ± 2.0 pA/µM (n=4) respectively (Table 

1). Moreover, RgDAAO microbiosensors were more selective for D-serine than pkDAAO ones. 

For example, RgDAAO microbiosensors showed much smaller electrochemical responses to D-

aspartate (5.5% of the D-serine response vs. 38.6% for pkDAAO, n=4, Table 1) and were also 

slightly less sensitive to D-alanine (104 % of D-serine response vs. 165% for pkDAAO, n=4, 

Table 1). Because D-aspartate and D-alanine can also be found in the mammalian CNS, together 

with D-serine52, 53, the lower electrochemical responses produced by the RgDAAO biosensor to 

these D-amino acids would contribute to a greater selectivity in vivo. For these reasons, 

biosensors were prepared using RgDAAO in the rest of this study.

In vitro detection of D-serine

We first calibrated the RgDAAO microbiosensors in D-serine standard solutions. The 

electrodes responded to changes in D-serine concentration by a step increase in the recorded 

oxidation current (Fig. 2A). The response time of the microbiosensors, defined as the duration of 

the rise between 10% and 90% of the response, was 2 ± 1 s (n=5, Fig. 2B). 
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12

D-serine oxidation current showed a linear relationship with concentration from 100 nM

to 500 µM, with a sensitivity of 9.2 ± 3.4 pA/µM D-serine (n=25, Fig. 2C). Importantly, only the 

electrodes showing a sensitivity higher than 7 pA/µM D-serine were used for further studies (see 

Experimental section). When the recorded signal was averaged at 1 data point/s, the noise was 

about 0.05 pA, yielding a theoretical detection limit of 16 nM (signal/noise = 3). This detection 

limit is significantly lower than the estimated D-serine concentration in the CNS20-22 and is 

therefore compatible with in vivo detection of this D-amino acid.

Oxygen dependence

D-amino acid oxidases require O2 as a co-substrate to complete the catalytic cycle. In 

order to evaluate the dependence of D-serine detection on O2 concentration, we performed 

similar calibration experiments using PBS in equilibrium with the ambient atmosphere, or 

saturated with O2 or N2 (Fig. 2C-D). Provided that O2 is non-limiting, the relationship between 

the amplitude of the step in oxidation current detected by the biosensor and D-serine 

concentration can be approximated by a Michaelis-Menten equation:

(1)

where C is the oxidation current, and Cmax and Km,app are analogous to the classical Vmax

and Km kinetic parameters used for the equation of the free enzyme. In a O2-saturated medium, 

the response of the microbiosensor followed a Michaelis-Menten kinetics at least up to 2.5 mM 

D-serine with a Km,app of 3.62 ± 0.38 mM, and a Cmax of 54.2 ± 12.5 nA (n=4, Fig. 2D). Km,app

was significantly lower than the Km of the free enzyme in solution (13.75 mM51). Such a 

difference between free and immobilized RgDAAO was reported previously54, and was attributed 
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13

to the conformation of the immobilized enzyme and to a higher concentration of D-serine in the 

hydrophobic enzymatic layer compared to the solution (partitioning effect). When calibrated in 

air-equilibrated buffer, the microbiosensor yielded very similar responses to those obtained in O2

saturated medium (Fig. 2C-D). However, the calibration curve obtained in N2-saturated buffer 

deviated significantly from the ones obtained in the presence of O2 for D-serine concentrations 

greater than 30 µM (Fig. 2C-D). The oxidation current detected by the microbiosensor reached a 

plateau at about 8 nA, reflecting the decreased DAAO activity at low O2 concentrations. The 

calibrations in the 0-30 µM D-serine range show a weak dependence on pO2, like most 

biosensors based on the detection of enzymatically produced H2O2
27, 33, 55. This weak dependence 

on pO2 is probably due to O2-regeneration during H2O2 oxidation on the Pt surface, that produces

a concentration of O2 at which the rate of reoxidation of reduced DAAO is not limiting55. 

Because physiological D-serine concentrations in the CNS are expected around 5-10 µM20-22, D-

serine detection at our microbiosensor should not depend on local pO2, except, possibly, during 

pathological states like cerebral ischemia. 

pH and temperature dependence

D-serine detection by the biosensor showed the same pH dependence as RgDAAO in 

solution51, 56. The response at 10 µM D-serine increased from pH 5.4 to 8.0, reached a maximum 

at pH 8.0-8.5, and decreased at higher values (n=4, Fig. 3A). The response at physiological pH 

(7.4) was 80.7% of the maximum response observed at pH 8.5.

The temperature dependence of D-serine detection was also similar to that of the free 

enzyme in solution51. The microbiosensor response to D-serine increased with temperature, from 
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15°C to 40°C (n=4, Fig 3B). Its sensitivity at 37°C (in vivo temperature) is 75% higher than that 

at 25°C (room temperature). 

Operational and storage stability

The operational stability of the microbiosensors was estimated by placing the electrode in 

PBS and then adding 5 µM D-serine to produce an electrochemical signal. One hour later, the 

recording medium was replaced and fresh D-serine was newly added. The microelectrode 

response was thus evaluated every hour for 6 hours, during which it was almost constantly 

exposed to 5 µM D-serine. Under these conditions, response to D-serine remained stable (104 ± 4 

% of the initial sensitivity after 6h, n=4), indicating that (1) the enzyme was strongly fixed to the 

platinum wire and (2) the microbiosensor could be exposed to physiological D-serine 

concentrations for several hours without any alteration of its sensitivity.

Storage stability was evaluated for microbiosensors kept at -20°C immediately after 

manufacturing. Microbiosensors were tested for their response to 5 µM D-serine 8, 21, 28, 35, 84 

and 160 days after manufacturing. They were dried and frozen between each test. Response to D-

serine remained unchanged, showing only 2% loss in sensitivity after more than 160 days of 

storage (n=3). 

Selectivity

The preceding data demonstrate that our microbiosensor can reliably detect D-serine 

concentrations as low as a few tens of nM for several hours in standard solutions. However, in 

order to detect D-serine in complex biological media, it is necessary to achieve selective 

measurements avoiding the detection of other endogenous molecules present in vivo. Endogenous 

molecules can interfere in two ways: (1) direct oxidation on the surface of the platinum wire and 
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(2) oxidation by the enzyme accompanied by H2O2 production. Both kinds of interference were 

investigated:

1- Endogenous oxidizable molecules

The major endogenous molecules susceptible to oxidation at a platinum surface at +500 

mV vs. Ag/AgCl reference electrode are serotonin (5-HT) and its metabolite 5-

hydroxyindolacetic acid (5-HIAA), dopamine and its metabolite dihydroxyphenylacetic acid 

(DOPAC), L-cysteine, ascorbic acid and uric acid. Biosensors using enzymes directly coated on a 

bare platinum wire or carbon fiber typically produce strong interfering oxidation currents in 

response to physiological concentrations of these endogenous molecules. For example, 

microbiosensors consisting in RgDAAO directly deposited on a bare Pt wire showed such 

interfering responses (Fig. 4A). An efficient strategy to overcome these non-specific signals is to 

deposit a layer of electropolymerized PPD onto the Pt wire30, 39, 57, 58. This process is highly 

reproducible and generates a thin (10 nm), uniform membrane. The PPD layer forms a steric 

barrier that allows H2O2 diffusion but blocks larger molecules57, 59. Moreover, electropolymerized 

films of m-phenylenediamine show superior selectivity compared to those prepared with its p- or 

o- isomers30. RgDAAO microbiosensors manufactured from a poly-m-phenylenediamine covered 

Pt wire showed a dramatic reduction (97-99%) in the interfering responses produced by 

endogenous oxidizable molecules (n=4, Fig. 4B). By contrast, D-serine detection was only 

reduced by 12%.

We also tested the operational stability of the PPD layer. As shown in Fig. 4C, the small

response to 20 µM 5-HT remained stable for 6 hours (in PBS containing 5 µM D-serine at room 

temperature), indicating that the PPD layer retained its ability to reject 5-HT over several hours. 

However the PPD layer had a tendency to lose its selectivity over several days, even when stored 

Page 15 of 35

ACS Paragon Plus Environment

Submitted to Analytical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



16

at -20°C. We found that it could be reactivated by dipping the microbiosensor for 1-2 s in a 100 

mM m-phenylenediamine solution, at 700 mV vs. Ag/AgCl reference electrode. This procedure 

barely affected the sensitivity of the microbiosensor and restored the original selectivity. Overall, 

these results show that interfering responses caused by endogenous oxidizable molecules are 

reduced by more than 97% by an electropolymerized film of m-phenylenediamine. Importantly, 

this selectivity layer decreases the responses to physiological concentrations of these interfering 

molecules to a negligible level compared to D-serine oxidation currents.

2- Other D-amino acids

Free RgDAAO in solution preferentially oxidizes neutral D-amino acids (such as D-

alanine, D-proline, D-cysteine, D-valine and D-serine), shows low activity towards basic ones 

and is practically inactive on acidic D-amino acids51. As expected, our RgDAAO 

microbiosensors generated large electrochemical responses not only to D-serine, but also to other 

D-amino acids, with the exception of D-aspartate and D-glutamate (6.5% and 1.7% respectively 

of the D-serine response at the same concentration, n=4, Fig. 5A). Glycine also generated very 

small responses (3.5% of D-serine response, n=4, Fig. 5A) whereas L-amino acids were not 

detected (<1.5% of D-serine response for L-serine and L-cysteine, n=4, Fig. 5A). Therefore, and 

consistent with earlier reports54, RgDAAO showed a broader substrate specificity when fixed on 

the microbiosensor than the free form, in particular, an increased activity towards basic amino 

acids.

In a recent study, Hamase et al.53 showed that D-serine was the predominant D-amino 

acid in the CNS, followed by D-aspartate (about 10% of D-serine contents), which is not detected 

by the microbiosensor, and by D-alanine (<3% of D-serine contents), which is a good substrate 

for RgDAAO (Fig. 5B). Therefore, the new RgDAAO microbiosensor would be selective for D-
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serine when used in the CNS, since interference from endogenous D-amino acids is negligible 

compared to D-serine signals.

Validation of the microbiosensor on brain extracts

To confirm the selectivity of the microbiosensor, we measured D-serine concentrations in 

brain extracts, comparing amperometric recordings and HPLC analysis. Both methods yielded 

comparable D-serine concentrations (130 ± 7 µM for HPLC vs. 139 ± 8 µM for the

microbiosensor, n=6, NS, Fig. 6C): amperometric detection using the microbiosensor differed 

from HPLC analysis by only 6%. To better quantify the amount of non-specific signals detected 

by the microbiosensor in the brain extracts, we eliminated D-serine (and other DAAO substrates) 

by incubating the sample for 2 hours with 20 U of RgDAAO and 200 U of catalase. This 

enzymatic treatment completely eliminated the D-serine peak in the HPLC chromatograms (Fig. 

6A) and reduced the amperometric signal by 95.0 ± 1.3% (n=6, p<0.01, Fig. 6B). This result 

confirms that the sum of interfering signals detected by the microbiosensor in brain extracts is 

about 5-6% of the D-serine signal, and that our RgDAAO microbiosensor specifically detects D-

serine when used in the CNS.

In vivo detection of D-serine

We then implanted our microbiosensors in the frontal cortex of anesthetized rats. The 

RgDAAO microbiosensor was implanted close to a control biosensor (devoid of DAAO) used to 

control for non-specific variations in oxidation current. Both microbiosensors were coated with 

an additional layer of Nafion to optimize biocompatibility (see Experimental Section).

Implantation in the CNS produced a small decrease in sensitivity (-13.2%, 10.05 ± 1.03 pA/µM 
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D-serine before, 8.72 ± 0.97 pA/µM after in vivo implantation, n=8). This decrease in sensitivity

is common to virtually all microbiosensors and generally occurs during the first 15 min following 

insertion into the brain60.

About 1 hr after implantation into the CNS, the background currents stabilized, showing a 

difference of 47.2 ± 7.5 pA (n=6) between the control and RgDAAO microbiosensor. This 

difference was not detected in calibrations made in PBS or in an artificial extracellular medium of 

ionic composition close to that of the rat cerebrospinal fluid (2.3 ± 1 pA, n=7). Because the 

control electrode and the RgDAAO microbiosensor were equally sensitive to endogenous 

oxidizable molecules like H2O2, ascorbate, etc., and because D-serine is the predominant D-

amino acid in the brain, the difference in background current mostly reflected the ambient basal 

D-serine concentration in the frontal cortex. To estimate the D-serine concentration represented 

by this difference in background currents, we calibrated our microbiosensors in artificial 

extracellular solution. In this medium, the sensitivity of the microbiosensor was unchanged 

compared to PBS. Moreover, addition of a physiological concentration (400 µM) of ascorbate in 

the recording medium did not change the sensitivity of the microbiosensor (n=3, data not shown). 

Using these calibration experiments, we estimated the basal extracellular D-serine concentration 

in the rat frontal cortex under ketamine-xylazine anesthesia at 3.1 ± 0.4 µM. This value is of the 

same order of magnitude as other estimations based on microdialysis experiments (6-8 µM)20-22.

We then injected 1 g/kg D-serine intraperitoneally. It induced a steady increase in 

oxidation current at the RgDAAO microbiosensor, but not at the control sensor, indicating that 

the electrochemical signal detected by the RgDAAO microbiosensor was specific for D-serine. 

This increase in electrochemical signal was most probably due to the diffusion of D-serine across 

the blood-brain barrier. Three hours after the injection, the increase in oxidation current at the 
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RgDAAO microbiosensor was 65.3 ± 14.2 pA whereas the background current at the control

microbiosensor decreased by 5.8 ± 1.8 pA (n=6, Fig. 7). Using the same calibration experiments 

in artificial cerebrospinal fluid, we estimated that the D-serine extracellular concentration

increased by 4.8 µM, to reach a final 7.9 ± 1.2 µM at the end of the 3 hour recording following 

the peripheral injection. This modest increase in D-serine concentration is in agreement with 

previous measurements made post-mortem on whole tissue61. However, these data contrast with 

an earlier report using microdialysis, that showed a much faster 6-fold increase in D-serine levels 

following the intraperitoneal injection of a smaller dose of D-serine (50 mg/kg)62. Indeed,

implantation of microdialysis probes in the brain usually produces significant tissue damage, 

especially to neighboring blood vessels24, 25. This problem might have led to an overestimation of 

D-serine diffusion into the brain. In this respect, biosensors of micrometric size seem preferable 

for studies requiring integrity of the blood-brain barrier25. In particular, the slow and modest

increase in D-serine levels detected by our microbiosensors after the peripheral D-serine 

injection, suggests that damage to the blood-brain barrier produced upon implantation of the 

electrodes in the frontal cortex was indeed minimal.

Conclusion

Overall, these data demonstrate that D-serine levels in the CNS can be monitored using 

platinum-wire microbiosensors coated with the enzyme RgDAAO. This is the first report, to our 

knowledge, showing successful detection of D-serine concentrations in vivo at the micromolar 

level using an amperometric biosensor. Compared to previous DAAO biosensors used for D-

amino acid detection in food, D-serine detection in vivo requires an increased selectivity, a higher 

sensitivity, and miniaturization to allow implantation in the CNS of small laboratory animals. 

Page 19 of 35

ACS Paragon Plus Environment

Submitted to Analytical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



20

These technical challenges have been overcome through (1) the use of RgDAAO, a more active 

and more selective enzyme than the previously used pkDAAO, (2) the development of 

micrometric platinum wire electrodes for H2O2 monitoring, and (3) the use of a highly selective 

PPD layer to block the non-specific oxidation of endogenous oxidizable molecules.

This new device will now pave the way for a better understanding of the physiological 

and pathological situations that lead to changes in D-serine levels in the CNS as well as the 

cellular mechanisms of D-serine release and elimination. It will also provide a powerful 

analytical tool for screening new pharmacological agents designed to modify D-serine 

metabolism in the CNS, in order to improve current treatments for neurological and psychiatric 

disorders such as schizophrenia62.
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Table 1

pKDAAO microbiosensor RgDAAO microbiosensor
Substrate Sensitivity 

(pA/µM)
% of D-serine 

detection
Sensitivity 
(pA/µM)

% of D-serine 
detection

D-Ser 6.5 ± 2.0 100% 9.2 ± 3.4 100%
D-Asp 2.5 ± 0.8 38.6% 0.5 ± 0.2 5.5%
D-Ala 10.8 ± 2.9 165% 9.6 ± 1.4 104%

Table 1: Response of microbiosensors produced with pkDAAO or RgDAAO on 

different D-amino acids. Sensitivity to D-serine, D-aspartate and D-alanine were assessed for 

the two microbiosensors. RgDAAO microbiosensors show greater sensitivity and improved 

selectivity for D-serine compared to pkDAAO ones (n=4).
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Figure 1: Design of the biosensor. A. Photomicrograph of the tip of a RgDAAO 
microbiosensor. The enzymatic layer appears as a translucid, yellow membrane. B. 
Schematic representation of the D-amino acid oxidase (RgDAAO) microbiosensor. A 

platinum wire is covered with a layer of poly-m-phenylenediamine (PPD) and an 
enzymatic membrane of RgDAAO. C. Enzymatic reaction allowing D-serine detection at 

the microbiosensor: D-serine is oxidized into hydroxypyruvate by RgDAAO with equimolar 
production of hydrogen peroxide (H2O2) that diffuses through the PPD layer and is 

oxidized by the platinum wire. H2O2 oxidation gives rise to two electrons detected by the 
patch-clamp amplifier. 
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Figure 2: D-serine detection. A. Response of the biosensor to changes in D-serine 
concentration. The electrode was rapidly transferred from phosphate buffered saline 
(PBS) to a 500 nM or 1 µM D-serine solution and back to PBS. The change in D-serine 

concentration was detected as a step in the oxidation current recorded by the electrode 
B. Response time. The electrode was switched from 0 to 10 µM D-serine. The response 
time was defined as the time between 10% and 90% of the current step. In order to 

obtain a higher time resolution, the signal was averaged over 10 ms (instead of 1 s) C. 
Calibration curves of a microbiosensor at three oxygen concentrations (N2-saturation, air 
equilibrated and O2-saturation) in the 0-50 µM D-serine concentration range. Except for 

the N2-saturated medium, the oxidation current shows a linear dependence on the D-
serine concentration. D. Calibration curves of the microbiosensor in the 0-2.5 mM D-

serine concentration range. The calibration was made in N2-saturated, in air equilibrated
and in O2-saturated PBS. The relationship between the oxidation current and D-serine 

concentration fits with a classical Michaelis-Menten equation in which O2 is not-limiting 
in catalysis. 
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Figure 3: pH and temperature dependence. A. pH-dependence of D-serine detection. pH 
was adjusted in 0.01 M PBS from 5.4 to 8.0 and 0.01 M borate from 8.3 to 11.5. Data are 
expressed as a percentage of the response at pH 8.0 (n=4). B. Temperature-dependence 

of the microbiosensor response (n=4). All measurements were performed in 10 µM D-
serine, PBS 0.01M, pH 7.4. 
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Figure 4: Selectivity of the biosensor. Responses of the biosensor to physiological 
concentrations of different interfering molecules present in the CNS, without (A) and with 

(B) the PPD layer (n=4). The PPD layer dramatically decreased the sensitivity of the 
biosensor to interfering substances. C. Stability of the PPD layer. Electrochemical 

responses to 5-HT remained low for at least 6 hours of in vitro experiment at room 
temperature (n=4, measuring conditions: PBS 0.01 M, pH 7.4).  
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Figure 5: Detection of other amino acids. A. Detection of the D-isomers of the 20 standard 
amino acids, as well as glycine, L-serine and L-cysteine (10 µM). Data are expressed as a 
percentage of the response obtained with 10 µM D-serine (n=4). As expected from the 
biochemical properties of RgDAAO, the biosensor detected all D-amino acids that we 

tested, except D-aspartate and D-glutamate. Glycine and L-amino acids produced 
negligible responses. B. Amounts of the most abundant D-amino acids in the mouse brain
as reported by Hamase et al53. The predominant D-amino acid is D-serine (red), followed 

by D-aspartate (blue) and D-alanine (green). 
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Figure 6: D-serine detection in brain extracts. A. Example chromatogram showing 
separation between D-serine (elution time = 12 min) and L-serine (= 13 min). The D-

serine peak completely disappeared after incubation with RgDAAO and catalase. B. 
Example of electrochemical responses recorded by the microbiosensor upon addition of a 
brain extract (40× dilution) and 3 µM D-serine. The response almost disappeared when 

the brain extract was preincubated with RgDAAO and catalase. C. Summary of the results 
of D-serine concentrations in brain extracts estimated by HPLC and the RgDAAO 

biosensor. Both techniques yielded comparable results, thus indicating an excellent 
selectivity for D-serine in brain extracts. * significant difference with D-serine levels 

following DAAO incubation (p<0.05). Data are expressed as mean ±SEM (n=6). 
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Figure 7: D-serine detection in vivo. Effect of an intraperitoneal injection of D-serine (1 
g/kg body weight) on the electrochemical signal detected in the frontal cortex by a 

RgDAAO microbiosensor and a control (BSA) microbiosensor implanted in its vicinity 
(about 0.5 mm). Background currents were systematically higher at the RgDAAO 
microbiosensor compared to the control electrode, revealing a detectable basal 

extracellular D-serine concentration. Peripheral D-serine injection produced a specific 
increase in oxidation current at the RgDAAO microbiosensor, reflecting D-serine diffusion 
across the blood brain barrier. Data are expressed as mean (solid line) ±SEM (shading) of 

6 experiments. 
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