210 research outputs found

    Complex Multimeric [FeFe] Hydrogenases: Biochemistry, Physiology and New Opportunities for the Hydrogen Economy

    Get PDF
    Hydrogenases are key enzymes of the energy metabolism of many microorganisms. Especially in anoxic habitats where molecular hydrogen (H2) is an important intermediate, these enzymes are used to expel excess reducing power by reducing protons or they are used for the oxidation of H2 as energy and electron source. Despite the fact that hydrogenases catalyze the simplest chemical reaction of reducing two protons with two electrons it turned out that they are often parts of multimeric enzyme complexes catalyzing complex chemical reactions with a multitude of functions in the metabolism. Recent findings revealed multimeric hydrogenases with so far unknown functions particularly in bacteria from the class Clostridia. The discovery of [FeFe] hydrogenases coupled to electron bifurcating subunits solved the enigma of how the otherwise highly endergonic reduction of the electron carrier ferredoxin can be carried out and how H2 production from NADH is possible. Complexes of [FeFe] hydrogenases with formate dehydrogenases revealed a novel enzymatic coupling of the two electron carriers H2 and formate. These novel hydrogenase enzyme complex could also contribute to biotechnological H2 production and H2 storage, both processes essential for an envisaged economy based on H2 as energy carrier

    An ancient pathway combining carbon dioxide fixation with the generation and utilization of a sodium ion gradient for ATP synthesis

    Get PDF
    Synthesis of acetate from carbon dioxide and molecular hydrogen is considered to be the first carbon assimilation pathway on earth. It combines carbon dioxide fixation into acetyl-CoA with the production of ATP via an energized cell membrane. How the pathway is coupled with the net synthesis of ATP has been an enigma. The anaerobic, acetogenic bacterium Acetobacterium woodii uses an ancient version of this pathway without cytochromes and quinones. It generates a sodium ion potential across the cell membrane by the sodium-motive ferredoxin:NAD oxidoreductase (Rnf). The genome sequence of A. woodii solves the enigma: it uncovers Rnf as the only ion-motive enzyme coupled to the pathway and unravels a metabolism designed to produce reduced ferredoxin and overcome energetic barriers by virtue of electron-bifurcating, soluble enzymes

    Long-range angular correlations on the near and away side in p–Pb collisions at

    Get PDF

    Azimuthal anisotropy of charged jet production in root s(NN)=2.76 TeV Pb-Pb collisions

    Get PDF
    We present measurements of the azimuthal dependence of charged jet production in central and semi-central root s(NN) = 2.76 TeV Pb-Pb collisions with respect to the second harmonic event plane, quantified as nu(ch)(2) (jet). Jet finding is performed employing the anti-k(T) algorithm with a resolution parameter R = 0.2 using charged tracks from the ALICE tracking system. The contribution of the azimuthal anisotropy of the underlying event is taken into account event-by-event. The remaining (statistical) region-to-region fluctuations are removed on an ensemble basis by unfolding the jet spectra for different event plane orientations independently. Significant non-zero nu(ch)(2) (jet) is observed in semi-central collisions (30-50% centrality) for 20 <p(T)(ch) (jet) <90 GeV/c. The azimuthal dependence of the charged jet production is similar to the dependence observed for jets comprising both charged and neutral fragments, and compatible with measurements of the nu(2) of single charged particles at high p(T). Good agreement between the data and predictions from JEWEL, an event generator simulating parton shower evolution in the presence of a dense QCD medium, is found in semi-central collisions. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe

    Forward-central two-particle correlations in p-Pb collisions at root s(NN)=5.02 TeV

    Get PDF
    Two-particle angular correlations between trigger particles in the forward pseudorapidity range (2.5 2GeV/c. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B. V.Peer reviewe

    Event-shape engineering for inclusive spectra and elliptic flow in Pb-Pb collisions at root(NN)-N-S=2.76 TeV

    Get PDF
    Peer reviewe

    Elliptic flow of muons from heavy-flavour hadron decays at forward rapidity in Pb-Pb collisions at root s(NN)=2.76TeV

    Get PDF
    The elliptic flow, v(2), of muons from heavy-flavour hadron decays at forward rapidity (2.5 <y <4) is measured in Pb-Pb collisions at root s(NN)= 2.76TeVwith the ALICE detector at the LHC. The scalar product, two- and four-particle Q cumulants and Lee-Yang zeros methods are used. The dependence of the v(2) of muons from heavy-flavour hadron decays on the collision centrality, in the range 0-40%, and on transverse momentum, p(T), is studied in the interval 3 <p(T)<10 GeV/c. A positive v(2) is observed with the scalar product and two-particle Q cumulants in semi-central collisions (10-20% and 20-40% centrality classes) for the p(T) interval from 3 to about 5GeV/c with a significance larger than 3 sigma, based on the combination of statistical and systematic uncertainties. The v(2) magnitude tends to decrease towards more central collisions and with increasing pT. It becomes compatible with zero in the interval 6 <p(T)<10 GeV/c. The results are compared to models describing the interaction of heavy quarks and open heavy-flavour hadrons with the high-density medium formed in high-energy heavy-ion collisions. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V.Peer reviewe

    Pseudorapidity and transverse-momentum distributions of charged particles in proton-proton collisions at root s=13 TeV

    Get PDF
    The pseudorapidity (eta) and transverse-momentum (p(T)) distributions of charged particles produced in proton-proton collisions are measured at the centre-of-mass energy root s = 13 TeV. The pseudorapidity distribution in vertical bar eta vertical bar <1.8 is reported for inelastic events and for events with at least one charged particle in vertical bar eta vertical bar <1. The pseudorapidity density of charged particles produced in the pseudorapidity region vertical bar eta vertical bar <0.5 is 5.31 +/- 0.18 and 6.46 +/- 0.19 for the two event classes, respectively. The transverse-momentum distribution of charged particles is measured in the range 0.15 <p(T) <20 GeV/c and vertical bar eta vertical bar <0.8 for events with at least one charged particle in vertical bar eta vertical bar <1. The evolution of the transverse momentum spectra of charged particles is also investigated as a function of event multiplicity. The results are compared with calculations from PYTHIA and EPOS Monte Carlo generators. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe

    Centrality evolution of the charged-particle pseudorapidity density over a broad pseudorapidity range in Pb-Pb collisions at root s(NN)=2.76TeV

    Get PDF
    Peer reviewe
    corecore