10 research outputs found

    Functional consequences of mitochondrial tRNA Trp and tRNA Arg mutations causing combined OXPHOS defects.

    No full text
    Contains fulltext : 83310.pdf (publisher's version ) (Closed access)Combined oxidative phosphorylation (OXPHOS) system deficiencies are a group of mitochondrial disorders that are associated with a range of clinical phenotypes and genetic defects. They occur in approximately 30% of all OXPHOS disorders and around 4% are combined complex I, III and IV deficiencies. In this study we present two mutations in the mitochondrial tRNA(Trp) (MT-TW) and tRNA(Arg) (MT-TR) genes, m.5556G>A and m.10450A>G, respectively, which were detected in two unrelated patients showing combined OXPHOS complex I, III and IV deficiencies and progressive multisystemic diseases. Both mitochondrial tRNA mutations were almost homoplasmic in fibroblasts and muscle tissue of the two patients and not present in controls. Patient fibroblasts showed a general mitochondrial translation defect. The mutations resulted in lowered steady-state levels and altered conformations of the tRNAs. Cybrid cell lines showed similar tRNA defects and impairment of OXPHOS complex assembly as patient fibroblasts. Our results show that these tRNA(Trp) and tRNA(Arg) mutations cause the combined OXPHOS deficiencies in the patients, adding to the still expanding group of pathogenic mitochondrial tRNA mutations.01 maart 20106 p

    Cytochrome c oxidase deficiency: Patients and animal models

    Get PDF
    Cytochrome c oxidase (COX) deficiencies are one of the most common defects of the respiratory chain found in mitochondrial diseases. COX is a multimeric inner mitochondrial membrane enzyme formed by subunits encoded by both the nuclear and the mitochondrial genome. COX biosynthesis requires numerous assembly factors that do not form part of the final complex but participate in prosthetic group synthesis and metal delivery in addition to membrane insertion and maturation of COX subunits. Human diseases associated with COX deficiency including encephalomyopathies, Leigh syndrome, hypertrophic cardiomyopathies, and fatal lactic acidosis are caused by mutations in COX subunits or assembly factors. In the last decade, numerous animal models have been created to understand the pathophysiology of COX deficiencies and the function of assembly factors. These animal models, ranging from invertebrates to mammals, in most cases mimic the pathological features of the human diseases
    corecore