19 research outputs found

    LKR/SDH Plays Important Roles throughout the Tick Life Cycle Including a Long Starvation Period

    Get PDF
    BACKGROUND:Lysine-ketoglutarate reductase/saccharopine dehydrogenase (LKR/SDH) is a bifunctional enzyme catalyzing the first two steps of lysine catabolism in plants and mammals. However, to date, the properties of the lysine degradation pathway and biological functions of LKR/SDH have been very little described in arthropods such as ticks. METHODOLOGY/PRINCIPAL FINDINGS:We isolated and characterized the gene encoding lysine-ketoglutarate reductase (LKR, EC 1.5.1.8) and saccharopine dehydrogenase (SDH, EC 1.5.1.9) from a tick, Haemaphysalis longicornis, cDNA library that encodes a bifunctional polypeptide bearing domains similar to the plant and mammalian LKR/SDH enzymes. Expression of LKR/SDH was detected in all developmental stages, indicating an important role throughout the tick life cycle, including a long period of starvation after detachment from the host. The LKR/SDH mRNA transcripts were more abundant in unfed and starved ticks than in fed and engorged ticks, suggesting that tick LKR/SDH are important for the starved tick. Gene silencing of LKR/SDH by RNAi indicated that the tick LKR/SDH plays an integral role in the osmotic regulation of water balance and development of eggs in ovary of engorged females. CONCLUSIONS/SIGNIFICANCE:Transcription analysis and gene silencing of LKR/SDH indicated that tick LKR/SDH enzyme plays not only important roles in egg production, reproduction and development of the tick, but also in carbon, nitrogen and water balance, crucial physiological processes for the survival of ticks. This is the first report on the role of LKR/SDH in osmotic regulation in animals including vertebrate and arthropods

    Walnut (Juglans regia L.) kernel postharvest deterioration as affected by pellicle integrity, cultivar and oxygen concentration

    No full text
    Increased demand for convenient, healthy foods has promoted the commercialization of shelled, more perishable walnut kernels. In this work for two of the major commercial walnut cultivars (‘Chandler’ and ‘Howard’) we determined the influence that disruption of the integrity of the seed coat pellicle during shelling operations trigger postharvest deterioration. Commercially mature ‘Chandler’ and ‘Howard’ nuts were subjected to Gentle (GS, <4% pellicle area damaged per kernel) or Harsh Shelling (HS, 20–22% of pellicle area damaged) and stored in air at 25 or 35 °C (accelerated aging) for three or six weeks. During this period, which simulated current marketing and retail display, we evaluated kernel color changes (Dried Fruit Association of California ‘DFA’ scale, L* and Hue), ethanol-soluble phenolic antioxidants, oil-free fatty acids (FFA), and peroxide value (PV). The kernel color changed from ‘light’ to ‘amber’ during storage, as demonstrated by the decrease in extra light and light kernels and by the reduced lightness (L*) and Hue values. Pellicle browning (amber) incidence was common on HS kernels, which also lost more phenolic antioxidants during storage. Minimizing pellicle damage by GS operations reduced triglyceride hydrolysis and peroxidation. Kernel quality loss was largely dependent on cultivar; browning oxidation, and lipid hydrolysis and oxidation were faster in ‘Howard’ than in ‘Chandler’. Searching for a practical and direct postharvest technology, in absence of proper temperature control, to reduce the rate of kernel deterioration, we tested controlled atmospheres (CA) at different O2 concentrations (0.0, 3.0, 6.0 or 21.0 kPa) on both cultivars. Overall, commercially shelled ‘Howard’ and ‘Chandler’ (kernels) will benefit from retail packaging with oxygen concentrations equal to or lower than 3.0 kPa during warm retail display. This information will be useful for processors, distributors and produce handlers to protect snack-friendly, ready-to-eat walnuts.Fil: Ortiz, Cristian Matias. Provincia de Buenos Aires. GobernaciĂłn. ComisiĂłn de Investigaciones CientĂ­ficas. Centro de InvestigaciĂłn y Desarrollo en CriotecnologĂ­a de Alimentos. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Centro de InvestigaciĂłn y Desarrollo en CriotecnologĂ­a de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de InvestigaciĂłn y Desarrollo en CriotecnologĂ­a de Alimentos; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata; ArgentinaFil: Vicente, Ariel Roberto. Universidad Nacional de La Plata. Facultad de Ciencias Agrarias y Forestales. Laboratorio de InvestigaciĂłn en Productos Agroindustriales; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata; ArgentinaFil: Fields, Rika P.. University of California at Davis; Estados UnidosFil: Grillo, Filipa. University of California at Davis; Estados UnidosFil: Labavitch, John M.. University of California at Davis; Estados UnidosFil: Donis Gonzalez, Irwin. University of California at Davis; Estados UnidosFil: Crisosto, Carlos H.. University of California at Davis; Estados Unido

    Transforming knowledge systems for life on Earth : Visions of future systems and how to get there

    Get PDF
    Formalised knowledge systems, including universities and research institutes, are important for contemporary societies. They are, however, also arguably failing humanity when their impact is measured against the level of progress being made in stimulating the societal changes needed to address challenges like climate change. In this research we used a novel futures-oriented and participatory approach that asked what future envisioned knowledge systems might need to look like and how we might get there. Findings suggest that envisioned future systems will need to be much more collaborative, open, diverse, egalitarian, and able to work with values and systemic issues. They will also need to go beyond producing knowledge about our world to generating wisdom about how to act within it. To get to envisioned systems we will need to rapidly scale methodological innovations, connect innovators, and creatively accelerate learning about working with intractable challenges. We will also need to create new funding schemes, a global knowledge commons, and challenge deeply held assumptions. To genuinely be a creative force in supporting longevity of human and non-human life on our planet, the shift in knowledge systems will probably need to be at the scale of the enlightenment and speed of the scientific and technological revolution accompanying the second World War. This will require bold and strategic action from governments, scientists, civic society and sustained transformational intent.Peer reviewe

    Transforming knowledge systems for life on Earth: Visions of future systems and how to get there

    No full text
    Formalised knowledge systems, including universities and research institutes, are important for contemporary societies. They are, however, also arguably failing humanity when their impact is measured against the level of progress being made in stimulating the societal changes needed to address challenges like climate change. In this research we used a novel futures-oriented and participatory approach that asked what future envisioned knowledge systems might need to look like and how we might get there. Findings suggest that envisioned future systems will need to be much more collaborative, open, diverse, egalitarian, and able to work with values and systemic issues. They will also need to go beyond producing knowledge about our world to generating wisdom about how to act within it. To get to envisioned systems we will need to rapidly scale methodological innovations, connect innovators, and creatively accelerate learning about working with intractable challenges. We will also need to create new funding schemes, a global knowledge commons, and challenge deeply held assumptions. To genuinely be a creative force in supporting longevity of human and non-human life on our planet, the shift in knowledge systems will probably need to be at the scale of the enlightenment and speed of the scientific and technological revolution accompanying the second World War. This will require bold and strategic action from governments, scientists, civic society and sustained transformational intent
    corecore