70 research outputs found

    Longitudinal river zonation in the tropics: examples of fish and caddisflies from endorheic Awash river, Ethiopia

    Get PDF
    Primary Research PaperSpecific concepts of fluvial ecology are well studied in riverine ecosystems of the temperate zone but poorly investigated in the Afrotropical region. Hence, we examined the longitudinal zonation of fish and adult caddisfly (Trichoptera) assemblages in the endorheic Awash River (1,250 km in length), Ethiopia. We expected that species assemblages are structured along environmental gradients, reflecting the pattern of large-scale freshwater ecoregions. We applied multivariate statistical methods to test for differences in spatial species assemblage structure and identified characteristic taxa of the observed biocoenoses by indicator species analyses. Fish and caddisfly assemblages were clustered into highland and lowland communities, following the freshwater ecoregions, but separated by an ecotone with highest biodiversity. Moreover, the caddisfly results suggest separating the heterogeneous highlands into a forested and a deforested zone. Surprisingly, the Awash drainage is rather species-poor: only 11 fish (1 endemic, 2 introduced) and 28 caddisfly species (8 new records for Ethiopia) were recorded from the mainstem and its major tributaries. Nevertheless, specialized species characterize the highland forests, whereas the lowlands primarily host geographically widely distributed species. This study showed that a combined approach of fish and caddisflies is a suitable method for assessing regional characteristics of fluvial ecosystems in the tropicsinfo:eu-repo/semantics/publishedVersio

    A global agenda for advancing freshwater biodiversity research

    Get PDF
    This manuscript is a contribution of the Alliance for Freshwater Life (www.allianceforfreshwaterlife.org). We thank Nick Bond, Lisa Bossenbroek, Lekima Copeland, Dean Jacobsen, Maria Cecilia Londo?o, David Lopez, Jaime Ricardo Garcia Marquez, Ketlhatlogile Mosepele, Nunia Thomas-Moko, Qiwei Wei and the authors of Living Waters: A Research Agenda for the Biodiversity of Inland and Coastal Waters for their contributions. We also thank Peter Thrall, Ian Harrison and two anonymous referees for their valuable comments that helped improve the manuscript. Open access funding enabled and organised by Projekt DEAL

    A global agenda for advancing freshwater biodiversity research

    Get PDF
    Global freshwater biodiversity is declining dramatically, and meeting the challenges of this crisis requires bold goals and the mobilisation of substantial resources. While the reasons are varied, investments in both research and conservation of freshwater biodiversity lag far behind those in the terrestrial and marine realms. Inspired by a global consultation, we identify 15 pressing priority needs, grouped into five research areas, in an effort to support informed stewardship of freshwater biodiversity. The proposed agenda aims to advance freshwater biodiversity research globally as a critical step in improving coordinated actions towards its sustainable management and conservation

    A global agenda for advancing freshwater biodiversity research

    Get PDF
    Global freshwater biodiversity is declining dramatically, and meeting the challenges of this crisis requires bold goals and the mobilisation of substantial resources. While the reasons are varied, investments in both research and conservation of freshwater biodiversity lag far behind those in the terrestrial and marine realms. Inspired by a global consultation, we identify 15 pressing priority needs, grouped into five research areas, in an effort to support informed stewardship of freshwater biodiversity. The proposed agenda aims to advance freshwater biodiversity research globally as a critical step in improving coordinated actions towards its sustainable management and conservation.Peer reviewe

    The faunal Ponto-Caspianization of central and western European waterways

    Get PDF
    As alien invasive species are a key driver of biodiversity loss, understanding patterns of rapidly changing global species compositions depends upon knowledge of invasive species population dynamics and trends at large scales. Within this context, the Ponto-Caspian region is among the most notable donor regions for aquatic invasive species in Europe. Using macroinvertebrate time series collected over 52 years (1968–2020) at 265 sites across 11 central and western European countries, we examined the occurrences, invasion rates, and abundances of freshwater Ponto-Caspian fauna. We examined whether: (i) successive Ponto-Caspian invasions follow a consistent pattern of composition pioneered by the same species, and (ii) Ponto-Caspian invasion accelerates subsequent invasion rates. In our dataset, Ponto-Caspian macroinvertebrates increased from two species in 1972 to 29 species in 2012. This trend was parallelled by a non-significant increasing trend in the abundances of Ponto-Caspian taxa. Trends in Ponto-Caspian invader richness increased significantly over time. We found a relatively uniform distribution of Ponto-Caspian macroinvertebrates across Europe without any relation to the distance to their native region. The Ponto-Caspian species that arrived first were often bivalves (46.5% of cases), particularly Dreissena polymorpha, followed secondarily by amphipods (83.8%; primarily Chelicorophium curvispinum and Dikerogammarus villosus). The time between consecutive invasions decreased significantly at our coarse regional scale, suggesting that previous alien establishments may facilitate invasions of subsequent taxa. Should alien species continue to translocate from the Ponto-Caspian region, our results suggest a high potential for their future invasion success highly connected central and western European waters. However, each species’ population may decline after an initial 'boom' phase or after the arrival of new invasive species, resulting in different alien species dominating over time

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe

    Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders

    Get PDF
    Genetic influences on psychiatric disorders transcend diagnostic boundaries, suggesting substantial pleiotropy of contributing loci. However, the nature and mechanisms of these pleiotropic effects remain unclear. We performed analyses of 232,964 cases and 494,162 controls from genome-wide studies of anorexia nervosa, attention-deficit/hyper-activity disorder, autism spectrum disorder, bipolar disorder, major depression, obsessive-compulsive disorder, schizophrenia, and Tourette syndrome. Genetic correlation analyses revealed a meaningful structure within the eight disorders, identifying three groups of inter-related disorders. Meta-analysis across these eight disorders detected 109 loci associated with at least two psychiatric disorders, including 23 loci with pleiotropic effects on four or more disorders and 11 loci with antagonistic effects on multiple disorders. The pleiotropic loci are located within genes that show heightened expression in the brain throughout the lifespan, beginning prenatally in the second trimester, and play prominent roles in neurodevelopmental processes. These findings have important implications for psychiatric nosology, drug development, and risk prediction.Peer reviewe
    corecore