77 research outputs found

    Evidence for local carbon-cycle perturbations superimposed on the Toarcian carbon isotope excursion

    Get PDF
    A Jurassic negative carbon isotope excursion (CIE), co-evolved with Toarcian Oceanic Anoxic Event (OAE) at ~183 Ma, is suggested to be linked to a global carbon-cycle perturbation and is well documented for Toarcian terrestrial fossil woods and marine sediments around the globe. A theoretically coupled δ13Ccarb-δ13Corg pattern due to such dubbed global carbon-cycle event from the negative CIE in Dotternhausen Toarcian stratigraphic profile (southwest Germany) is unexpectedly disturbed by two-step δ13Ccarb-δ13Corg decoupling in which the last step, upper in the stratigraphic order, is of higher magnitude. However, the trigger(s) for these sudden decoupling disturbances are still poorly constrained. Here, connecting new carbon and oxygen isotope data with documentary lipid biomarkers shows that the global carbon cycle during the Toarcian OAE was disturbed by enhanced green sulfur bacteria (GSB) metabolisms and early diagenesis at local scales. The first step δ13Ccarb-δ13Corg decoupling was induced in the initial stage of the GSB bloom. The second step of much larger δ13Ccarb-δ13Corg decoupling arising from a GSB prosperity was, however, exaggerated by early diagenesis through the respiration of sulfate-reducing bacteria (SRB). Paleo-geographically distinct localities of the Tethys region show contrasting decoupled δ13Ccarb-δ13Corg patterns, which implies that the second-order carbon-cycle perturbations have pervasively and independently impacted the global carbon event during the Toarcian OAE

    Discovery of the Lanthipeptide Curvocidin and Structural Insights into its Trifunctional Synthetase CuvL

    Get PDF
    Lanthipeptides are ribosomally-synthesized natural products from bacteria featuring stable thioether-crosslinks and various bioactivities. Herein, we report on a new clade of tricyclic class-IV lanthipeptides with curvocidin from Thermomonospora curvata as its first representative. We obtained crystal structures of the corresponding lanthipeptide synthetase CuvL that showed a circular arrangement of its kinase, lyase and cyclase domains, forming a central reaction chamber for the iterative substrate processing involving nine catalytic steps. The combination of experimental data and artificial intelligence-based structural models identified the N-terminal subdomain of the kinase domain as the primary site of substrate recruitment. The ribosomal precursor peptide of curvocidin employs an amphipathic α-helix in its leader region as an anchor to CuvL, while its substrate core shuttles within the central reaction chamber. Our study thus reveals general principles of domain organization and substrate recruitment of class-IV and class-III lanthipeptide synthetases.Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Research Training Group RTG 2473 "Bioactive Peptides"RTG 2473 "Bioactive Peptides"Peer Reviewe

    Population response during an Oceanic Anoxic Event: The case of Posidonotis (Bivalvia) from the Lower Jurassic of the Neuquén Basin, Argentina

    Get PDF
    Benthonic marine species show a wide range of biological reactions to seawater chemical changes through time, from subtle adjustments to extinction. The Early Toarcian Oceanic Anoxic Event (T-OAE) was recently recognized in the Neuquén Basin, Argentina, confirming its global scope. The event was identified chemostratigraphically on the basis of a relative increase in marine organic carbon and a characteristic negative carbonisotope excursion (δ13Corg) in bulk rock and fossil wood in the upper Pliensbachian-lower Toarcian interval in the Arroyo Lapa section (Neuquén). Simultaneously with collection of lithological samples, a high-resolution biostratigraphical survey was carried out, and the scarce benthonic fauna was collected in order to check the biotic response to changing marine geochemical conditions. We present here an analysis of size and abundance data from the T-OAE interval in the Neuquén Basin for the dominant bivalve species, the paper-clam Posidonotis cancellata (Leanza), and relate these data to geochemical proxies (%TOC and δ13Corg) obtained at the same locality. The abundance of P. cancellata increased when the rest of the benthos diminished, reaching a maximum at the onset level of the T-OAE, and then decreasing. Size-frequency distributions show a noteworthy lack of juvenile shells. Shell size shows a positive correlation with %TOC in the whole section, though over the T-OAE interval proper, it decreases below the level where the maximum %TOC value is attained and increases above it. Posidonotis cancellata shows features of opportunistic species, such as high tolerance to hypoxia, strong dominance in impoverished environments and a strong dependence on primary productivity, but at the same time had a reproductive strategy more similar to equilibrium species, with relatively low juvenile mortality rates. Several anatomical features suggest adaptation to permanently dysaerobic environments. The species disappeared just before the minimum negative carbon-isotope value was reached; and by the same time the genus became extinct worldwide

    Novel entropically driven conformation-specific interactions with Tomm34 protein modulate Hsp70 protein folding and ATPase activities

    Get PDF
    Co-chaperones containing tetratricopeptide repeat (TPR) domains enable cooperation between Hsp70 and Hsp90 to maintain cellular proteostasis. Although the details of the molecular interactions between some TPR domains and heat shock proteins are known, we describe a novel mechanism by which Tomm34 interacts with and coordinates Hsp70 activities. In contrast to the previously defined Hsp70/Hsp90-organizing protein (Hop), Tomm34 interaction is dependent on the Hsp70 chaperone cycle. Tomm34 binds Hsp70 in a complex process; anchorage of the Hsp70 C terminus by the TPR1 domain is accompanied by additional contacts formed exclusively in the ATP-bound state of Hsp70 resulting in a high affinity entropically driven interaction. Tomm34 induces structural changes in determinants within the Hsp70-lid subdomain and modulates Hsp70/Hsp40-mediated refolding and Hsp40-stimulated Hsp70 ATPase activity. Because Tomm34 recruits Hsp90 through its TPR2 domain, we propose a model in which Tomm34 enables Hsp70/Hsp90 scaffolding and influences the Hsp70 chaperone cycle, providing an additional role for co-chaperones that contain multiple TPR domains in regulating protein homeostasis

    Oceanic response to Pliensbachian and Toarcian magmatic events: Implications from an organic-rich basinal succession in the NW Tethys

    Get PDF
    The Bächental bituminous marls (Bächentaler Bitumenmergel) belonging to the Sachrang Member of the Lower Jurassic Middle Allgäu Formation were investigated using a multidisciplinary approach to determine environmental controls on the formation of organic-rich deposits in a semi-restricted basin of the NW Tethys during the Early Jurassic. The marls are subdivided into three units on the basis of mineralogical composition, source-rock parameters, redox conditions, salinity variations, and diagenetic processes. Redox proxies (e.g., pristane/phytane ratio; aryl isoprenoids; bioturbation; ternary plot of iron, total organic carbon, and sulphur) indicate varying suboxic to euxinic conditions during deposition of the Bächental section. Redox variations were mainly controlled by sea-level fluctuations with the tectonically complex bathymetry of the Bächental basin determining watermass exchange with the Tethys Ocean. Accordingly, strongest anoxia and highest total organic carbon content (up to 13%) occur in the middle part of the profile (upper tenuicostatum and lower falciferum zones), coincident with an increase in surface-water productivity during a period of relative sea-level lowstand that induced salinity stratification in a stagnant basin setting. This level corresponds to the time interval of the lower Toarcian oceanic anoxic event (T-OAE). However, the absence of the widely observed lower Toarcian negative carbon isotope excursion in the study section questions its unrestricted use as a global chemostratigraphic marker. Stratigraphic correlation of the thermally immature Bächental bituminous marls with the Posidonia Shale of SW Germany on the basis of C27/C29 sterane ratio profiles and ammonite data suggests that deposition of organic matter-rich sediments in isolated basins in the Alpine realm commenced earlier (late Pliensbachian margaritatus Zone) than in regionally proximal epicontinental seas (early Toarcian tenuicostatum Zone). The late Pliensbachian onset of reducing conditions in the Bächental basin coincided with an influx of volcaniclastic detritus that was possibly connected to complex rifting processes of the Alpine Tethys and with a globally observed eruption-induced extinction event. The level of maximum organic matter accumulation in the Bächental basin corresponds to the main eruptive phase of the Karoo-Ferrar large igneous province (LIP), confirming its massive impact on global climate and oceanic conditions during the Early Jurassic. The Bächental marl succession is thus a record of the complex interaction of global (i.e., LIP) and local (e.g., redox and salinity variations, basin morphology) factors that caused reducing conditions and organic matter enrichment in the Bächental basin. These developments resulted in highly inhomogeneous environmental conditions in semi-restricted basins of the NW Tethyan domain during late Pliensbachian and early Toarcian time

    The Lower Jurassic Posidonia Shale in the Swabian Alb Geopark – Geoeducation in an Industrial Environment

    No full text
    The Lower Jurassic Posidonia Shale of Southern Germany is famous for its excellently preserved fossils. First of all, the large and spectacular ichthyosaurs, pterosaurs and crocodiles impress. Fish, crinoids, ammonites and belemnites are witnesses of a very special living world in the former Posidonia Shale Sea. The rather small and inconspicuous bivalves, brachiopods and serpulids provide important clues about conditions in the ecosystem. The Posidonia Shale is one of the best-known fossil deposits in the world, and for centuries has provided scientists with an enormous wealth of information. One of the most important fossil collections is displayed in the Fossil Museum of the Werkforum in Dotternhausen. Together with the quarries (active and recultivated), the museum offers unique opportunities for scientific and geoeducational purposes

    Changes in organic matter composition during the Toarcian Oceanic Anoxic Event (T-OAE) in the Posidonia Shale Formation from Dormettingen (SW-Germany)

    Get PDF
    During the Early Toarcian, deposition of organic carbon-rich-shales occurred throughout the epicontinental sea across Europe. Climate instability and high extinction rates in the marine realm were associated with profound environmental changes. The Toarcian Oceanic Anoxic Event (T-OAE) has been linked to the injection of greenhouse gases (e.g. oceanic methane) into the atmosphere triggered by the emplacement of the Karoo-Ferrar large igneous province (LIP) volcanism. The data presented are obtained from the Posidonia Shale Formation in Dormettingen (southwestern Germany), ~2 km from the well-known Dotternhausen section. Despite the intense palaeontological and geochemical research, studies on the particulate organic matter (POM) across the T-OAE are scarce. Here, we provide a detailed study of POM of the Dormettingen section as a tool to evaluate changes in the depositional environment. Integrated POM (i.e. amorphous organic matter, marine and terrestrial palynomorphs) and geochemical (i.e. carbon isotope δ13C) analyses reveal different episodes of palaeoecological upheavals during the studied time interval. In this study, we will integrate new palynofacies data and combine it with the existing sedimentological and palaeoecological data of Dotternhausen in order to interpret relative sea-level fluctuations and climatic changes at the local palaeogeographic setting.ISSN:0031-0182ISSN:1872-616
    corecore