31 research outputs found

    Investigation of snow melt dynamics and boundary layer processes over a melting snow surface

    Get PDF
    In this thesis, we investigate the surface energy balance of a snow pack for a continuous and a patchy snow cover. Snow surface temperatures have been validated to assess the accuracy of the surface energy balance of a continuous snow pack for individual points. As the four radiation components contribute largest to the surface energy balance, accurate radiation measurements (typically only available for the shortwave radiation) are required for the model input. A model error (up to 5 K in snow surface temperatures) is introduced to the surface energy balance of a continuous snow pack by parametrizing the incoming longwave radiation, which is typically not measured. Turbulent heat fluxes are typically calculated in physics-based models with Monin-Obukhov bulk formulations and its parametrization contributes to model errors in the surface energy balance up to 2 K. The parametrization of the turbulent fluxes was found to be the largest error source in the case of measured incoming longwave radiation. Very stable atmospheric conditions over snow and a non-equilibrium boundary layer have a strong but very difficult to quantify influence on turbulent surface fluxes. Stability corrections were typically developed over non-snow surfaces and applied over snow in complex terrain, where several mandatory assumptions of the Monin-Obukhov bulk formulation are heavily violated. Therefore, our validation shows a much better model representation of the surface energy balance in idealized flat terrain in comparison with complex terrain. In this thesis, we develop new stability corrections over snow and assess the error of the Monin-Obukhov bulk formulation with 6 W m-2 and an additional error of 1-5 W m-2 due to state-of-the-art parametrizations of the stability correction. The energy balance of a snow pack significantly alters for heterogeneous land-surfaces in the late ablation period. Warm air from the bare ground can be efficiently transported over the snow patch and modifies the near-surface air temperature field. Terrestrial laser scanning measurements reveal that local snow ablation rates at the upwind edge of the snow patch are 25 % larger than further inside of the snow patch. The strong thermal contrast in surface temperatures in combination with calm wind conditions leads to the development of a stable internal boundary layer, which grows along the fetch and reduces turbulent mixing of warm air masses. Small-scale boundary layer dynamics are typically not resolved in hydrological models. Numerical simulations with the atmospheric model Advanced Regional Prediction System (ARPS) reveal a mean air temperature increase above the patchy snow cover of 2-5 K in comparison with a continuous snow cover, which could lead to an increase in daily mean snow ablation rates up to 30 %. Above-average snow ablation rates at the upwind edge of a snow patch could be resolved by the development of a temperature footprint approach. However, the effect of increasing near-surface mean air temperatures to snow ablation from lateral transport processes is small when considering an entire melting period. Uncertainties in measured precipitation, parametrized incoming longwave radiation and calculated turbulent fluxes with Monin-Obukhov bulk formulation lead to larger errors in modelled snow heights than neglecting lateral transport processes

    Future Perspectives of Co-Simulation in the Smart Grid Domain

    Full text link
    The recent attention towards research and development in cyber-physical energy systems has introduced the necessity of emerging multi-domain co-simulation tools. Different educational, research and industrial efforts have been set to tackle the co-simulation topic from several perspectives. The majority of previous works has addressed the standardization of models and interfaces for data exchange, automation of simulation, as well as improving performance and accuracy of co-simulation setups. Furthermore, the domains of interest so far have involved communication, control, markets and the environment in addition to physical energy systems. However, the current characteristics and state of co-simulation testbeds need to be re-evaluated for future research demands. These demands vary from new domains of interest, such as human and social behavior models, to new applications of co-simulation, such as holistic prognosis and system planning. This paper aims to formulate these research demands that can then be used as a road map and guideline for future development of co-simulation in cyber-physical energy systems

    How Are Turbulent Sensible Heat Fluxes and Snow Melt Rates Affected by a Changing Snow Cover Fraction?

    Get PDF
    The complex interaction between the atmospheric boundary layer and the heterogeneous land surface is typically not resolved in numerical models approximating the turbulent heat exchange processes. In this study, we consider the effect of the land surface heterogeneity on the spatial variability of near-surface air temperature fields and on snow melt processes. For this purpose we calculated turbulent sensible heat fluxes and daily snow depth depletion rates with the physics-based surface process model Alpine3D. To account for the effect of a heterogeneous land surface (such as patchy snow covers) on the local energy balance over snow, Alpine3D is driven by two-dimensional atmospheric fields of air temperature and wind velocity, generated with the non-hydrostatic atmospheric model Advanced Regional Prediction System. The atmospheric model is initialized with a set of snow distributions [snow cover fraction (SCF) and number of snow patches] and atmospheric conditions (wind velocities) for an idealized flat test site. Numerical results show that the feedback of the heterogeneity of the land surface (snow, no snow) on the near-surface variability of the atmospheric fields result in a significant increase in the mean air temperature ΔTa = 1.8 K (3.7 and 4.9 K) as the SCF is decreased from a continuous snow cover to 55% (25 and 5%). Mean air temperatures over snow heavily increase with increasing initial wind velocities and weakly increase with an increasing number of snow patches. Surface turbulent sensible heat fluxes and daily snow depth depletion rates are strongly correlated to mean air temperatures, leading to 22–40% larger daily snow depth depletion rates for patchy snow covers. Numerical results from the idealized test site are compared with a test site in complex terrain. As slope-induced atmospheric processes (such as the development of katabatic flows) modify turbulent sensible heat fluxes, the variation of the surface energy balance is larger in complex terrain than for an idealized flat test site

    Representation of Horizontal Transport Processes in Snowmelt Modeling by Applying a Footprint Approach

    Get PDF
    The energy balance of an alpine snow cover significantly changes once the snow cover gets patchy. The local advection of warm air causes above-average snow ablation rates at the upwind edge of the snow patch. As lateral transport processes are typically not considered in models describing surface exchange, e.g., for hydrological or meteorological applications, small-scale variations in snow ablation rates are not resolved. The overall model error in the hydrological model Alpine3D is split into a contribution from the pure “leading edge effect” and a contribution from an increase in the mean air temperature due to a positive snow-albedo feedback mechanism. We found an overall model error for the entire ablation period of 4% for the almost flat alpine test site Gletschboden and 14% for the Wannengrat area, which is located in highly complex terrain including slopes of different aspects. Terrestrial laser scanning measurements at the Gletschboden test site were used to estimate the pure “leading edge effect” and reveal an increase in snow ablation rates of 25–30% at the upwind edge of a snow patch and a total of 4–6% on a catchment scale for two different ablation days with a snow cover fraction lower than 50%. The estimated increase of local snow ablation rates is then around 1–3% for an entire ablation period for the Gletschboden test site and approximately 4% for the Wannengrat test site. Our results show that the contribution of lateral heat advection is smaller than typical uncertainties in snow melt modeling due to uncertainties in boundary layer parameters but increases in regions with smaller snow patch sizes and long-lasting patchy snow covers in the ablation period. We introduce a new temperature footprint approach, which reproduces a 15% increase of snow ablation rates at the upwind edge of the snow patch, whereas observations indicate that this value is as large as 25%. This conceptual model approach could be used in hydrological models. In addition to improved snow ablation rates, the footprint model better represents snow mask maps and turbulent sensible heat fluxes from eddy-covariance measurements

    Increasing the oxidation power of TCNQ by coordination of B(C6F5)3

    Get PDF
    The oxidation power of the cyanocarbon TCNQ (tetracyano-quinodimethane) can be significantly increased to approximately E = +0.9 V vs. Cp2Fe by coordination of up to four equivalents of the strong fluorinated Lewis acid B(C6F5)3, resulting in a highly reactive but easy-to-use oxidation system. Thianthrene and tris(4-bromophenyl)amine were oxidized to the corresponding radical cations. Dianionic [TCNQ·4 B(C6F5)3]2− was formed upon reduction with two equivalents of ferrocene or decamethylcobaltocene. [TCNQ·4 B(C6F5)3]− and [TCNQ·4 B(C6F5)3]2− are rare cases of redox-active weakly-coordinating anions

    How do Stability Corrections Perform in the Stable Boundary Layer Over Snow?

    Get PDF
    We assess sensible heat-flux parametrizations in stable conditions over snow surfaces by testing and developing stability correction functions for two alpine and two polar test sites. Five turbulence datasets are analyzed with respect to, (a) the validity of the Monin–Obukhov similarity theory, (b) the model performance of well-established stability corrections, and (c) the development of new univariate and multivariate stability corrections. Using a wide range of stability corrections reveals an overestimation of the turbulent sensible heat flux for high wind speeds and a generally poor performance of all investigated functions for large temperature differences between snowand the atmosphere above (>10 K).Applying the Monin–Obukhov bulk formulation introduces a mean absolute error in the sensible heat flux of 6W m-2 (compared with heat fluxes calculated directly from eddy covariance). The stability corrections produce an additional error between 1 and 5W m-2, with the smallest error for published stability corrections found for the Holtslag scheme. We confirm from previous studies that stability corrections need improvements for large temperature differences and wind speeds, where sensible heat fluxes are distinctly overestimated. Under these atmospheric conditions our newly developed stability corrections slightly improve the model performance. However, the differences between stability corrections are typically small when compared to the residual error, which stems from the Monin–Obukhov bulk formulation

    Brownian motors: noisy transport far from equilibrium

    Full text link
    Transport phenomena in spatially periodic systems far from thermal equilibrium are considered. The main emphasize is put on directed transport in so-called Brownian motors (ratchets), i.e. a dissipative dynamics in the presence of thermal noise and some prototypical perturbation that drives the system out of equilibrium without introducing a priori an obvious bias into one or the other direction of motion. Symmetry conditions for the appearance (or not) of directed current, its inversion upon variation of certain parameters, and quantitative theoretical predictions for specific models are reviewed as well as a wide variety of experimental realizations and biological applications, especially the modeling of molecular motors. Extensions include quantum mechanical and collective effects, Hamiltonian ratchets, the influence of spatial disorder, and diffusive transport.Comment: Revised version (Aug. 2001), accepted for publication in Physics Report

    How Are Turbulent Sensible Heat Fluxes and Snow Melt Rates Affected by a Changing Snow Cover Fraction?

    No full text
    The complex interaction between the atmospheric boundary layer and the heterogeneous land surface is typically not resolved in numerical models approximating the turbulent heat exchange processes. In this study, we consider the effect of the land surface heterogeneity on the spatial variability of near-surface air temperature fields and on snow melt processes. For this purpose we calculated turbulent sensible heat fluxes and daily snow depth depletion rates with the physics-based surface process model Alpine3D. To account for the effect of a heterogeneous land surface (such as patchy snow covers) on the local energy balance over snow, Alpine3D is driven by two-dimensional atmospheric fields of air temperature and wind velocity, generated with the non-hydrostatic atmospheric model Advanced Regional Prediction System. The atmospheric model is initialized with a set of snow distributions [snow cover fraction (SCF) and number of snow patches] and atmospheric conditions (wind velocities) for an idealized flat test site. Numerical results show that the feedback of the heterogeneity of the land surface (snow, no snow) on the near-surface variability of the atmospheric fields result in a significant increase in the mean air temperature Delta T-a = 1.8 K (3.7 and 4.9 K) as the SCF is decreased from a continuous snow cover to 55% (25 and 5%). Mean air temperatures over snow heavily increase with increasing initial wind velocities and weakly increase with an increasing number of snow patches. Surface turbulent sensible heat fluxes and daily snow depth depletion rates are strongly correlated to mean air temperatures, leading to 22-40% larger daily snow depth depletion rates for patchy snow covers. Numerical results from the idealized test site are compared with a test site in complex terrain. As slope-induced atmospheric processes (such as the development of katabatic flows) modify turbulent sensible heat fluxes, the variation of the surface energy balance is larger in complex terrain than for an idealized flat test site

    How do patchy snow covers affect turbulent sensible heat fluxes? – Numerical analysis and experimental findings

    No full text
    The surface energy balance of a snow cover significantly changes once the snow cover gets patchy. The substantial progress in knowledge about the surface energy balance of patchy snow covers is a mandatory requirement to reduce biases in flux parameterizations in larger scale meteorological or climatological models. The aim of this project was to numerically improve energy balance calculations late in the melting season when the spatial variability of turbulent fluxes is especially high owing to the complex feedback between bare/snow-covered areas and the atmosphere above. In order to account for the feedback between the atmosphere and the patchy snow-cover we calculated three-dimensional air temperature and wind velocity fields with the non-hydrostatic atmospheric model ARPS for an idealized flat test site initialized with different snow distributions and atmospheric conditions. The physics-based surface process model Alpine3D has been forced with these atmospheric fields close to the snow surface in order to resolve the small-scale spatial variability. We further initialized the model with atmospheric fields above the blending height as a reference case. The numerical analysis shows that for simulations initialized with fully-resolved atmospheric fields below the blending height, turbulent sensible heat fluxes are up to 50 W m-2 larger than for calculations forced without resolved atmospheric fields. This difference in turbulent sensible heat fluxes over snow increase with increasing number of snow patches and decreasing snow-cover fraction. This is mainly attributed to an increase in the mean near-surface air temperature over snow due to horizontal and vertical exchange processes induced by the heterogeneous land-surface. We used flux footprint estimations to analyse turbulence data measured during three ablation periods in the Dischma valley (Switzerland). This fundamental theory was deployed for eddy-covariance measurements revealing the origin of the measured turbulence as a function of the measurement height, atmospheric stability and wind speed. For patchy snow covers with flux footprints larger than the fetch distance, the observed turbulence is typically recorded as a combination of the turbulence over snow and the turbulence over the adjacent bare ground. These conditions were observed in the upper Dischma valley at the end of the melting period for a small snow cover fraction (< 30 %). The strong influence of the bare ground on the heat exchange over snow leads to much smaller measured heat fluxes than calculated in the physics-based one-dimensional snow model SNOWPACK. We show that at least two eddy-covariance measurements in different vertical heights and a snow cover mask to detect the fetch distance are required to clearly separate the turbulence over snow and the turbulence over the adjacent bare ground. Using the footprint technique turbulent sensible heat fluxes towards the snow patch significantly increase by this separation. This approach will allow an improved parametrization of turbulent heat fluxes over patchy snow-covers in larger-scale energy balance models

    Representation of Horizontal Transport Processes in Snowmelt Modeling by Applying a Footprint Approach

    Get PDF
    The energy balance of an alpine snow cover significantly changes once the snow cover gets patchy. The local advection of warm air causes above-average snow ablation rates at the upwind edge of the snow patch. As lateral transport processes are typically not considered in models describing surface exchange, e. g., for hydrological or meteorological applications, small-scale variations in snow ablation rates are not resolved. The overall model error in the hydrological model Alpine3D is split into a contribution from the pure " leading edge effect" and a contribution from an increase in the mean air temperature due to a positive snow-albedo feedback mechanism. We found an overall model error for the entire ablation period of 4% for the almost flat alpine test site Gletschboden and 14% for the Wannengrat area, which is located in highly complex terrain including slopes of different aspects. Terrestrial laser scanning measurements at the Gletschboden test site were used to estimate the pure " leading edge effect" and reveal an increase in snow ablation rates of 25-30% at the upwind edge of a snow patch and a total of 4-6% on a catchment scale for two different ablation days with a snow cover fraction lower than 50%. The estimated increase of local snow ablation rates is then around 1-3% for an entire ablation period for the Gletschboden test site and approximately 4% for the Wannengrat test site. Our results show that the contribution of lateral heat advection is smaller than typical uncertainties in snow melt modeling due to uncertainties in boundary layer parameters but increases in regions with smaller snow patch sizes and long-lasting patchy snow covers in the ablation period. We introduce a new temperature footprint approach, which reproduces a 15% increase of snow ablation rates at the upwind edge of the snow patch, whereas observations indicate that this value is as large as 25%. This conceptual model approach could be used in hydrological models. In addition to improved snow ablation rates, the footprint model better represents snow mask maps and turbulent sensible heat fluxes from eddy-covariance measurements
    corecore