129 research outputs found

    Weaker land–climate feedbacks from nutrient uptake during photosynthesis-inactive periods

    Get PDF
    Terrestrial carbon–climate feedbacks depend on two large and opposing fluxes—soil organic matter decomposition and photosynthesis—that are tightly regulated by nutrients . Earth system models (ESMs) participating in the Coupled Model Intercomparison Project Phase 5 represented nutrient dynamics poorly , rendering predictions of twenty-first century carbon–climate feedbacks highly uncertain. Here, we use a new land model to quantify the effects of observed plant nutrient uptake mechanisms missing in most other ESMs. In particular, we estimate the global role of root nutrient competition with microbes and abiotic processes during periods without photosynthesis. Nitrogen and phosphorus uptake during these periods account for 45 and 43%, respectively, of annual uptake, with large latitudinal variation. Globally, night-time nutrient uptake dominates this signal. Simulations show that ignoring this plant uptake, as is done when applying an instantaneous relative demand approach, leads to large positive biases in annual nitrogen leaching (96%) and N O emissions (44%). This N O emission bias has a GWP equivalent of ~2.4 PgCO yr , which is substantial compared to the current terrestrial CO sink. Such large biases will lead to predictions of overly open terrestrial nutrient cycles and lower carbon sequestration capacity. Both factors imply over-prediction of positive terrestrial feedbacks with climate in current ESMs. 1,2 1,3 −1 2 2 2

    An open-source database for the synthesis of soil radiocarbon data: International Soil Radiocarbon Database (ISRaD) version 1.0

    Get PDF
    Radiocarbon is a critical constraint on our estimates of the timescales of soil carbon cycling that can aid in identifying mechanisms of carbon stabilization and destabilization and improve the forecast of soil carbon response to management or environmental change. Despite the wealth of soil radiocarbon data that have been reported over the past 75 years, the ability to apply these data to global-scale questions is limited by our capacity to synthesize and compare measurements generated using a variety of methods. Here, we present the International Soil Radiocarbon Database (ISRaD; http://soilradiocarbon.org, last access: 16 December 2019), an open-source archive of soil data that include reported measurements from bulk soils, distinct soil carbon pools isolated in the laboratory by a variety of soil fractionation methods, samples of soil gas or water collected interstitially from within an intact soil profile, CO2 gas isolated from laboratory soil incubations, and fluxes collected in situ from a soil profile. The core of ISRaD is a relational database structured around individual datasets (entries) and organized hierarchically to report soil radiocarbon data, measured at different physical and temporal scales as well as other soil or environmental properties that may also be measured and may assist with interpretation and context. Anyone may contribute their own data to the database by entering it into the ISRaD template and subjecting it to quality assurance protocols. ISRaD can be accessed through (1) a web-based interface, (2) an R package (ISRaD), or (3) direct access to code and data through the GitHub repository, which hosts both code and data. The design of ISRaD allows for participants to become directly involved in the management, design, and application of ISRaD data. The synthesized dataset is available in two forms: the original data as reported by the authors of the datasets and an enhanced dataset that includes ancillary geospatial data calculated within the ISRaD framework. ISRaD also provides data management tools in the ISRaD-R package that provide a starting point for data analysis; as an open-source project, the broader soil community is invited and encouraged to add data, tools, and ideas for improvement. As a whole, ISRaD provides resources to aid our evaluation of soil dynamics across a range of spatial and temporal scales. The ISRaD v1.0 dataset is archived and freely available at https://doi.org/10.5281/zenodo.2613911 (Lawrence et al., 2019).Max Planck Institute for Biogeochemistry; European Research CouncilEuropean Research Council (ERC) [695101]; USGS Land Change Science mission area; US Department of AgricultureUnited States Department of Agriculture (USDA) [2018-67003-27935]; US Geological Survey Powell Center for the working group on Soil Carbon Storage and FeedbacksOpen access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Abundance determines the functional role of bacterial phylotypes in complex communities

    Get PDF
    Bacterial communities are essential for the functioning of the Earth’s ecosystems1. A key challenge is to quantify the functional roles of bacterial taxa in nature to understand how the properties of ecosystems change over time or under different environmental conditions2. Such knowledge could be used, for example, to understand how bacteria modulate biogeochemical cycles3, and to engineer bacterial communities to optimize desirable functional processes4. Communities of bacteria are, however, extraordinarily complex with hundreds of interacting taxa in every gram of soil and every millilitre of pond water5. Little is known about how the tangled interactions within natural bacterial communities mediate ecosystem functioning, but high levels of bacterial diversity have led to the assumption that many taxa are functionally redundant6. Here, we pinpoint the bacterial taxa associated with keystone functional roles, and show that rare and common bacteria are implicated in fundamentally different types of ecosystem functioning. By growing hundreds of bacterial communities collected from a natural aquatic environment (rainwater-filled tree holes) under the same environmental conditions, we show that negative statistical interactions among abundant phylotypes drive variation in broad functional measures (respiration, metabolic potential, cell yield), whereas positive interactions between rare phylotypes influence narrow functional measures (the capacity of the communities to degrade specific substrates). The results alter our understanding of bacterial ecology by demonstrating that unique components of complex communities are associated with different types of ecosystem functioning
    corecore