89 research outputs found

    Theory of plastic and elastic properties of graphite and silicon carbide

    Get PDF

    Multiomic studies to improve fruit quality of berry fruits

    Get PDF
    In this study we are going to use different omic-techniques to analyze fruits of three species of berries such as strawberry, raspberry and black currant. Berry fruit are well appreciated for their delicate flavor and nutraceutical properties, with consumer demand increasing over the last years. Furthermore, climate change and market globalization have made necessary to improve the production while maintaining fruit quality traits. Goodberry project is developping analytical platforms, covering from transcriptomic to metabolites and volatile compounds analysis, to find new factors controlling plant adaptation, fruit production and quality. In this study we implement the metabolomic analysis of strawberry, raspberry and black currant fruits from the 2017 harvest, as well as 2018 harvest during this year. To analyze and compare the data we use multiomic tools and bioinformatics to extract properly conclusion The analyses take different berry cultivars, adapted to diverse environments, were grown in 2017 and 2018 in different latitudes (Germany, France, Norway, Italy, Poland and Scotland). The data comes from a combination of gas-chromatography-mass spectrometry (GC-TOF-MS) and headspace solid phase micro extraction (HS-SPME) coupled with GC-MS was used to semi-quantify fruit primary metabolome and volatilome. Around 50 key primary metabolites, including sugars and acids, which are fundamental factors influencing fruit taste and 75 volatiles, responsible of the aroma, were identified across the different genotypes and climates. Multivariate statistical approaches allow us to point out the genetic and environmental factors underlying complex metabolic traits involved in fruit quality. Preliminary analysis showed that both climate and genetic factors influence primary metabolite and volatile content, even if the environment seems to have a stronger impact on the first one.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Application of multiomic technologies to study the environmental impact on berry fruit quality

    Get PDF
    Berries, such as strawberry, raspberry and black currant, are well appreciated for their delicate flavor and nutraceutical properties, with consumer demand increasing over the last years. However, climate change and market globalization have made necessary to improve the production while maintaining fruit quality traits. Among the EU GoodBerry project’s objetive are develop state-of-the-art analytical platforms, covering from transcriptomic to metabolites and volatile compounds analysis, to find new factors controlling plant adaptation, fruit production and quality and use the data to face climate changes. Here we present the metabolomic analysis of strawberry, raspberry and black currant fruits from the 2017 harvest. Different berry cultivars, adapted to diverse environments, were grown in 2017 and 2018 in different latitudes (Germany, France, Norway, Italy and Poland) combination of spectrometry techniques was used to semi-quantify fruit primary metabolome and volatilome. Around 50 key primary metabolites, including sugars and acids, which are fundamental factors influencing fruit taste and 75 volatiles, responsible of the aroma, were identified across the different genotypes and climates. Multivariate statistical approaches allow us to point out the genetic and environmental factors underlying complex metabolic traits involved in fruit quality.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Flowering Phenology of Six Seasonal-Flowering Strawberry Cultivars in a Coordinated European Study

    Get PDF
    The flowering phenology of six genetically distant strawberry cultivars (‘Candonga®’ (ES), ‘Clery’ (IT), ‘Florence’ (UK), ‘Frida’ (NO), ‘Gariguette’ (FR), and ‘Sonata’ (NL)) was studied for 3 years in relation to climatic parameters in open-field cultivation at three locations (Norway, Poland, Germany) and in soil-less cultivation at two locations (Italy, and France), covering a distance of 16 degrees of latitude. This proved to be a useful approach for unravelling the climatic adaptation and plasticity of strawberry genotypes and their suitability both for profitable cultivation and as a breeding pedigree. Despite the intercorrelated character of the climatic variables, the observed results highlight the importance of global radiation as a powerful modifying phenological factor in strawberry. Generally, early flower initiation was associated with elevated temperature and global radiation. ‘Frida’ revealed the highest dependency on global radiation for flower initiation, while ‘Sonata’ was least affected by temperature and radiation. In general, temperature and global radiation in periods both preceding and following flower initiation had a stronger positive effect on the number of flowers than on crowns, especially under open-field conditions. The influence of these factors was highly variable across the cultivars: ‘Clery’, ‘Florence’, and ‘Gariguette’ were most affected, while ‘Frida’ was least influenced.publishedVersio

    Sutureless and rapid deployment implantation in bicuspid aortic valve: results from the sutureless and rapid-deployment aortic valve replacement international registry.

    Get PDF
    Background Benefits of sutureless and rapid deployment (SURD) bioprostheses in bicuspid aortic valves (BAV) are controversial. The aim of this study is to report the outcomes of patients undergoing aortic valve replacement (AVR) for BAV from the Sutureless and Rapid-Deployment Aortic Valve Replacement International Registry (SURD-IR). Methods Of the 4,636 patients who received primary isolated SURD-AVR between 2007 and 2018, 191 (4.1%) BAV patients underwent AVR with SURD valve. Results Overall 30-day mortality was 1.6%. The Intuity valve was implanted in 53.9% of cases, whereas the Perceval was implanted in 46.1%. Rate of stroke for isolated AVR was 4.2%. No case of endocarditis, thromboembolism, myocardial infarction, valve dislocation or structural valve deterioration was reported in the early phase. Rate of pacemaker implantation and moderate-severe aortic regurgitation (AR) were 7.9% and 3.7%, respectively. Conclusions BAV is not considered a contraindication for the implantation of SURD valves. However, detailed information of aortic root geometry as well as the knowledge of some technical considerations are mandatory for a good outcome

    Development and Validation of a Multilingual Lexicon as a Key Tool for the Sensory Analyses and Consumer Tests of Blueberry and Raspberry Fruit

    Get PDF
    A comprehensive lexicon is a necessary communication tool between the panel leader and panelists to describe each sensory stimulus potentially evoked by a product. In the current scientific breeding and trading scenario, a multilingual sensory lexicon is necessary to ensure the consistency of sensory evaluations when tests are conducted across countries and/or with international panelists. This study aimed to develop a reference multilingual lexicon for raspberry (Rubus idaeus L.) and blueberry (Vaccinium corymbosum L.) to perform comparative sensory tests through panels operating in different countries using their native language. Attributes were collected from state-of-the-art literature and integrated with a detailed description of the sensory stimulus associated with each term. A panel of sensory judges was trained to test lexicon efficacy. After training, panelists evaluated three cultivars of blueberry and raspberry through RATA (Rate All That Apply), which allowed missing attributes to be excluded while rating those actually present. Results showed the discerning efficacy of the lexicon developed can be a valuable tool for planning sensory evaluations held in different countries, opening up further possibilities to enrich blueberry and raspberry descriptor lists with emerging terms from local experience and evaluations of berry genotypes with peculiar traits.This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 101000747. Partial funding for open access charge: Universidad de Málaga

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Planck intermediate results XXIV : Constraints on variations in fundamental constants

    Get PDF
    Any variation in the fundamental physical constants, more particularly in the fine structure constant, a, or in the mass of the electron, me, affects the recombination history of the Universe and cause an imprint on the cosmic microwave background angular power spectra. We show that the Planck data allow one to improve the constraint on the time variation of the fine structure constant at redshift z - 10(3) by about a factor of 5 compared to WMAP data, as well as to break the degeneracy with the Hubble constant, H-0. In addition to a, we can set a constraint on the variation in the mass of the electron, me, and in the simultaneous variation of the two constants. We examine in detail the degeneracies between fundamental constants and the cosmological parameters, in order to compare the limits obtained from Planck and WMAP and to determine the constraining power gained by including other cosmological probes. We conclude that independent time variations of the fine structure constant and of the mass of the electron are constrained by Planck to Delta alpha/alpha = (3.6 +/- 3.7) x 10(-3) and Delta m(e)/m(e) = (4 +/- 11) x 10(-3) at the 68% confidence level. We also investigate the possibility of a spatial variation of the fine structure constant. The relative amplitude of a dipolar spatial variation in a (corresponding to a gradient across our Hubble volume) is constrained to be delta alpha/alpha = (-2.4 +/- 3.7) x 10(-2).Peer reviewe

    The status of the world's land and marine mammals: diversity, threat, and knowledge

    Get PDF
    Knowledge of mammalian diversity is still surprisingly disparate, both regionally and taxonomically. Here, we present a comprehensive assessment of the conservation status and distribution of the world's mammals. Data, compiled by 1700+ experts, cover all 5487 species, including marine mammals. Global macroecological patterns are very different for land and marine species but suggest common mechanisms driving diversity and endemism across systems. Compared with land species, threat levels are higher among marine mammals, driven by different processes (accidental mortality and pollution, rather than habitat loss), and are spatially distinct (peaking in northern oceans, rather than in Southeast Asia). Marine mammals are also disproportionately poorly known. These data are made freely available to support further scientific developments and conservation action

    Planck intermediate results XIV : Dust emission at millimetre wavelengths in the Galactic plane

    Get PDF
    Peer reviewe
    corecore