9 research outputs found

    Knockout of angiotensin converting enzyme-2 receptor leads to morphological aberrations in rodent olfactory centers and dysfunctions associated with sense of smell

    Get PDF
    Neuronal morphological characterization and behavioral phenotyping in mouse models help dissecting neural mechanisms of brain disorders. Olfactory dysfunctions and other cognitive problems were widely reported in asymptomatic carriers and symptomatic patients infected with Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). This led us to generate the knockout mouse model for Angiotensin Converting Enzyme-2 (ACE2) receptor, one of the molecular factors mediating SARS-CoV-2 entry to the central nervous system, using CRISPR-Cas9 based genome editing tools. ACE2 receptors and Transmembrane Serine Protease-2 (TMPRSS2) are widely expressed in the supporting (sustentacular) cells of human and rodent olfactory epithelium, however, not in the olfactory sensory neurons (OSNs). Hence, acute inflammation induced changes due to viral infection in the olfactory epithelium may explain transient changes in olfactory detectabilities. As ACE2 receptors are expressed in different olfactory centers and higher brain areas, we studied the morphological changes in the olfactory epithelium (OE) and olfactory bulb (OB) of ACE2 KO mice in comparison with wild type animals. Our results showed reduced thickness of OSN layer in the OE, and a decrease in cross-sectional area of glomeruli in the OB. Aberrations in the olfactory circuits were revealed by lowered immunoreactivity toward microtubule associated protein 2 (MAP2) in the glomerular layer of ACE2 KO mice. Further, to understand if these morphological alterations lead to compromised sensory and cognitive abilities, we performed an array of behavioral assays probing their olfactory subsystems’ performances. ACE2 KO mice exhibited slower learning of odor discriminations at the threshold levels and novel odor identification impairments. Further, ACE2 KO mice failed to memorize the pheromonal locations while trained on a multimodal task implying the aberrations of neural circuits involved in higher cognitive functions. Our results thus provide the morphological basis for the sensory and cognitive disabilities caused by the deletion of ACE2 receptors and offer a potential experimental approach to study the neural circuit mechanisms of cognitive impairments observed in long COVID

    Isolation and Identification of Soil-Derived Pseudomonas Species with Potential Plant Growth Promoting Traits

    Get PDF
    Microbial biofertilizers have proven to be a better substitute to the chemical fertilizers. Pseudomonas is a beneficial bacterium in enhancing growth of the plants. In this study, attempt was made to collect soil sample and isolate the pseudomonas strains, study their morphological, cultural characteristics. These isolates were subjected to various biochemical tests such as Indole Acetic Acid (IAA) Test, Triple-Sugar-Iron Test, etc., and out of nine isolates namely PF1,PF2,PF9 , PF2, PF7 and PF8 have yield maximum results and have shown a potential for their use as biofertilizers

    Persistent olfactory learning deficits during and post-COVID-19 infection

    No full text
    Quantifying olfactory impairments can facilitate early detection of Coronavirus disease 2019 (COVID-19). Despite being a debated topic, many reports provide evidence for the neurotropism of SARS-CoV-2. However, a sensitive, specific, and accurate non-invasive method for quantifying persistent neurological impairments is missing to date. To quantify olfactory detectabilities and neurocognitive impairments in symptomatic COVID-19 patients during and post-infection periods, we used a custom-built olfactory-action meter (OAM) providing accurate behavioral readouts. Ten monomolecular odors were used for quantifying olfactory detectabilities and two pairs of odors were employed for olfactory matching tests. We followed cohorts of healthy subjects, symptomatic patients, and recovered subjects for probing olfactory learning deficits, before the Coronavirus Omicron variant was reported in India. Our method identifies severe and persistent olfactory dysfunctions in symptomatic patients during COVID-19 infection. Symptomatic patients and recovered subjects showed significant olfactory learning deficits during and post-infection periods, 4–18 months, in comparison to healthy subjects. On comparing olfactory fitness, we found differential odor detectabilities and olfactory function scores in symptomatic patients and asymptomatic carriers. Our results indicate probable long-term neurocognitive deficits in COVID-19 patients imploring the necessity of long-term tracking during post-infection period. Differential olfactory fitness observed in symptomatic patients and asymptomatic carriers demand probing mechanisms of potentially distinct infection routes

    The many ways tissue phagocytes respond to dying cells

    No full text
    corecore