1,344 research outputs found

    Circumpolar Characteristics of Antarctic Waters, by A.L. Gordon and R.D. Goldberg

    Get PDF

    On Large-Scale Graph Generation with Validation of Diverse Triangle Statistics at Edges and Vertices

    Full text link
    Researchers developing implementations of distributed graph analytic algorithms require graph generators that yield graphs sharing the challenging characteristics of real-world graphs (small-world, scale-free, heavy-tailed degree distribution) with efficiently calculable ground-truth solutions to the desired output. Reproducibility for current generators used in benchmarking are somewhat lacking in this respect due to their randomness: the output of a desired graph analytic can only be compared to expected values and not exact ground truth. Nonstochastic Kronecker product graphs meet these design criteria for several graph analytics. Here we show that many flavors of triangle participation can be cheaply calculated while generating a Kronecker product graph. Given two medium-sized scale-free graphs with adjacency matrices AA and BB, their Kronecker product graph has adjacency matrix C=A⊗BC = A \otimes B. Such graphs are highly compressible: ∣E∣|{\cal E}| edges are represented in O(∣E∣1/2){\cal O}(|{\cal E}|^{1/2}) memory and can be built in a distributed setting from small data structures, making them easy to share in compressed form. Many interesting graph calculations have worst-case complexity bounds O(∣E∣p){\cal O}(|{\cal E}|^p) and often these are reduced to O(∣E∣p/2){\cal O}(|{\cal E}|^{p/2}) for Kronecker product graphs, when a Kronecker formula can be derived yielding the sought calculation on CC in terms of related calculations on AA and BB. We focus on deriving formulas for triangle participation at vertices, tC{\bf t}_C, a vector storing the number of triangles that every vertex is involved in, and triangle participation at edges, ΔC\Delta_C, a sparse matrix storing the number of triangles at every edge.Comment: 10 pages, 7 figures, IEEE IPDPS Graph Algorithms Building Block

    Indentation d'une membrane fortement précontrainte par un poinçon plat\\ et modèle de type JKR avec tension de surface

    Get PDF
    The contact between a cylindrical flat indenter and a highly prestressed membrane is considered. The behavior is totally controlled by the assumed constant surface tension. The analytical solution is developed to describe the shape of the surface as a function of the applied force as well as the strain energy. A Griffith/JKR type energy analysis makes then possible to approach the adhesion measurement.Le contact entre un indenteur plat cylindrique et d'une membrane fortement précontrainte est considéré. Le comportement est totalement contrôlé par la tension de surface supposée constante. La solution analytique est développée pour décrire la forme de la surface en fonction de la force appliquée ainsi que l'énergie de déformation. Une analyse énergétique de type Griffith/JKR permet ensuite d'aborder la mesure d'adhésion

    An Ensemble Framework for Detecting Community Changes in Dynamic Networks

    Full text link
    Dynamic networks, especially those representing social networks, undergo constant evolution of their community structure over time. Nodes can migrate between different communities, communities can split into multiple new communities, communities can merge together, etc. In order to represent dynamic networks with evolving communities it is essential to use a dynamic model rather than a static one. Here we use a dynamic stochastic block model where the underlying block model is different at different times. In order to represent the structural changes expressed by this dynamic model the network will be split into discrete time segments and a clustering algorithm will assign block memberships for each segment. In this paper we show that using an ensemble of clustering assignments accommodates for the variance in scalable clustering algorithms and produces superior results in terms of pairwise-precision and pairwise-recall. We also demonstrate that the dynamic clustering produced by the ensemble can be visualized as a flowchart which encapsulates the community evolution succinctly.Comment: 6 pages, under submission to HPEC Graph Challeng

    Controlling for confounding network properties in hypothesis testing and anomaly detection

    Get PDF
    An important task in network analysis is the detection of anomalous events in a network time series. These events could merely be times of interest in the network timeline or they could be examples of malicious activity or network malfunction. Hypothesis testing using network statistics to summarize the behavior of the network provides a robust framework for the anomaly detection decision process. Unfortunately, choosing network statistics that are dependent on confounding factors like the total number of nodes or edges can lead to incorrect conclusions (e.g., false positives and false negatives). In this dissertation we describe the challenges that face anomaly detection in dynamic network streams regarding confounding factors. We also provide two solutions to avoiding error due to confounding factors: the first is a randomization testing method that controls for confounding factors, and the second is a set of size-consistent network statistics which avoid confounding due to the most common factors, edge count and node count
    • …
    corecore