147 research outputs found

    The age-regulated zinc finger factor ZNF367 is a new modulator of neuroblast proliferation during embryonic neurogenesis.

    Get PDF
    Global population aging is one of the major social and economic challenges of contemporary society. During aging the progressive decline in physiological functions has serious consequences for all organs including brain. The age-related incidence of neurodegenerative diseases coincides with the sharp decline of the amount and functionality of adult neural stem cells. Recently, we identified a short list of brain age-regulated genes by means of next-generation sequencing. Among them znf367 codes for a transcription factor that represents a central node in gene co-regulation networks during aging, but whose function in the central nervous system (CNS), is completely unknown. As proof of concept, we analysed the role of znf367 during Xenopus laevis neurogenesis. By means of a gene loss of function approach limited to the CNS, we suggested that znf367 might act as a key controller of the neuroblast cell cycle, particularly in the progression of mitosis and spindle checkpoint. A candidate gene approach based on a weighted-gene co-expression network analysis, revealed fancd2 and ska3 as possible targets of znf367. The age-related decline of znf367 correlated well with its role during embryonic neurogenesis, opening new lines of investigation also in adult neurogenesis to improved maintenance and even repair of neuronal function

    MicroRNAs in hematopoietic development

    Get PDF
    Background: MicroRNAs (miRNAs) are short non-coding RNAs involved in the posttranscriptional regulation of a wide range of biological processes. By binding to complementary sequences on target messenger RNAs, they trigger translational repression and degradation of the target, eventually resulting in reduced protein output. MiRNA-dependent regulation of protein translation is a very widespread and evolutionarily conserved mechanism of posttranscriptional control of gene expression. Accordingly, a high proportion of mammalian genes are likely to be regulated by miRNAs. In the hematopoietic system, both transcriptional and posttranscriptional regulation of gene expression ensure proper differentiation and function of stem cells, committed progenitors as well as mature cells. Results : In recent years, miRNA expression profiling of various cell types in the hematopoietic system, as well as gene-targeting approaches to assess the function of individual miRNAs, revealed the importance of this type of regulation in the development of both innate and acquired immunity. Conclusions : We discuss the general role of miRNA biogenesis in the development of hematopoietic cells, as well as specific functions of individual miRNAs in stem cells as well as in mature immune cells

    The PPARÎł2 Pro12Ala variant is protective against progression of nephropathy in people with type 2 diabetes

    Get PDF
    Cross-sectional studies suggest the association between diabetic nephropathy and the PPARÎł2 Pro12Ala polymorphism of the peroxisome proliferator-activated receptor Îł2 (PPARÎł2). Prospective data are limited to microalbuminuria and no information on renal function is available to date. The present study evaluates the association between the Pro12Ala polymorphism of PPARÎł2 and the progression of albuminuria and decay in glomerular filtration rate (GFR) in type 2 diabetes

    Dnmt3a restrains mast cell inflammatory responses

    Get PDF
    DNA methylation and specifically the DNA methyltransferase enzyme DNMT3A are involved in the pathogenesis of a variety of hematological diseases and in regulating the function of immune cells. Although altered DNA methylation patterns and mutations in DNMT3A correlate with mast cell proliferative disorders in humans, the role of DNA methylation in mast cell biology is not understood. By using mast cells lacking Dnmt3a, we found that this enzyme is involved in restraining mast cell responses to acute and chronic stimuli, both in vitro and in vivo. The exacerbated mast cell responses observed in the absence of Dnmt3a were recapitulated or enhanced by treatment with the demethylating agent 5-aza-2â€Č-deoxycytidine as well as by down-modulation of Dnmt1 expression, further supporting the role of DNA methylation in regulating mast cell activation. Mechanistically, these effects were in part mediated by the dysregulated expression of the scaffold protein IQGAP2, which is characterized by the ability to regulate a wide variety of biological processes. Altogether, our data demonstrate that DNMT3A and DNA methylation are key modulators of mast cell responsiveness to acute and chronic stimulation

    miR-146a and NF-ÎșB1 regulate mast cell survival and T lymphocyte differentiation

    Get PDF
    The transcription factor NF-ÎșB regulates the expression of a broad number of genes central to immune and inflammatory responses. We identified a new molecular network that comprises specifically the NF-ÎșB family member NF-ÎșB1 (p50) and miR-146a, and we show that in mast cells it contributes to the regulation of cell homeostasis and survival, while in T lymphocytes it modulates T cell memory formation. Increased mast cell survival was due to unbalanced expression of pro- and antiapoptotic factors and particularly to the complete inability of p50- deleted mast cells to induce expression of miR-146a, which in the context of mast cell survival acted as a proapoptotic factor. Interestingly, in a different cellular context, namely, human and mouse primary T lymphocytes, miR-146a and NF-ÎșB p50 did not influence cell survival or cytokine production but rather T cell expansion and activation in response to T cell receptor (TCR) engagement. Our data identify a new molecular network important in modulating adaptive and innate immune responses and show how the same activation-induced microRNA (miRNA) can be similarly regulated in different cell types even in response to different stimuli but can still determine very different outcomes, likely depending on the specific transcriptome

    The Role of Uric Acid in Acute and Chronic Coronary Syndromes.

    Get PDF
    Uric acid (UA) is the final product of the catabolism of endogenous and exogenous purine nucleotides. While its association with articular gout and kidney disease has been known for a long time, new data have demonstrated that UA is also related to cardiovascular (CV) diseases. UA has been identified as a significant determinant of many different outcomes, such as all-cause and CV mortality, and also of CV events (mainly Acute Coronary Syndromes (ACS) and even strokes). Furthermore, UA has been related to the development of Heart Failure, and to a higher mortality in decompensated patients, as well as to the onset of atrial fibrillation. After a brief introduction on the general role of UA in CV disorders, this review will be focused on UA's relationship with CV outcomes, as well as on the specific features of patients with ACS and Chronic Coronary Syndrome. Finally, two issues which remain open will be discussed: the first is about the identification of a CV UA cut-off value, while the second concerns the possibility that the pharmacological reduction of UA is able to lower the incidence of CV events

    TET2 regulates mast cell differentiation and proliferation through catalytic and non-catalytic activities

    Get PDF
    Dioxygenases of the TET family impact genome functions by converting 5-methylcytosine (5mC) in DNA to 5-hydroxymethylcytosine (5hmC). Here, we identified TET2 as a crucial regulator of mast cell differentiation and proliferation. In the absence of TET2, mast cells showed disrupted gene expression and altered genome-wide 5hmC deposition, especially at enhancers and in the proximity of downregulated genes. Impaired differentiation of Tet2- ablated cells could be relieved or further exacerbated by modulating the activity of other TET family members, and mechanistically it could be linked to the dysregulated expression of C/EBP family transcription factors. Conversely, the marked increase in proliferation induced by the loss of TET2 could be rescued exclusively by re-expression of wild-type or catalytically inactive TET2. Our data indicate that, in the absence of TET2, mast cell differentiation is under the control of compensatory mechanisms mediated by other TET family members, while proliferation is strictly dependent on TET2 expression

    Standalone vertex ïŹnding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ Îł, H → Z Z∗ →4l and H →W W∗ →lÎœlÎœ. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined ïŹts probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson
    • 

    corecore