L T

/

1\

=y

CrossMark
& click for updates

Dnmt3a restrains mast cell inflammatory responses

Cristina Leoni®®, Sara Montagner?, Andrea Rinaldi¢, Francesco Bertoni“9, Sara Polletti®, Chiara Balestrierie,

and Silvia Monticelli®!

2Institute for Research in Biomedicine, Universita della Svizzera italiana (USI), 6500 Bellinzona, Switzerland; PGraduate School for Cellular and Biomedical
Sciences, University of Bern, 3012 Bern, Switzerland; “Lymphoma and Genomics Research Program, Institute of Oncology Research (IOR), USI, 6500
Bellinzona, Switzerland; dOnv:ology Institute of Southern Switzerland (10Sl), 6500 Bellinzona, Switzerland; and *Department of Experimental Oncology,

European Institute of Oncology (IEO), 20139 Milan, Italy

Edited by Anjana Rao, Sanford Consortium for Regenerative Medicine and La Jolla Institute for Allergy and Immunology, La Jolla, CA, and approved January

10, 2017 (received for review October 3, 2016)

DNA methylation and specifically the DNA methyltransferase
enzyme DNMT3A are involved in the pathogenesis of a variety
of hematological diseases and in regulating the function of immune
cells. Although altered DNA methylation patterns and mutations in
DNMT3A correlate with mast cell proliferative disorders in humans,
the role of DNA methylation in mast cell biology is not understood. By
using mast cells lacking Dnmt3a, we found that this enzyme is in-
volved in restraining mast cell responses to acute and chronic stimuli,
both in vitro and in vivo. The exacerbated mast cell responses ob-
served in the absence of Dnmt3a were recapitulated or enhanced by
treatment with the demethylating agent 5-aza-2’-deoxycytidine as
well as by down-modulation of Dnmt1 expression, further supporting
the role of DNA methylation in regulating mast cell activation. Mech-
anistically, these effects were in part mediated by the dysregulated
expression of the scaffold protein IQGAP2, which is characterized by
the ability to regulate a wide variety of biological processes. Alto-
gether, our data demonstrate that DNMT3A and DNA methylation
are key modulators of mast cell responsiveness to acute and
chronic stimulation.
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NA methylation is an epigenetic process in which a methyl

group is covalently linked to a cytosine base in the genomic
DNA, predominantly at CpG dinucleotides, yielding 5-methyl-
cytosine (5SmC). Such a process is carried out by three DNA
methyltransferases (DNMT1, DNMT3A, and DNMT3B), and
has a critical role in the control of gene expression (1, 2). In
general, high levels of DNA methylation are associated with
transcriptional silencing (3), especially when present at promoter
regions and at repetitive elements (4), although the function of
DNA methylation at other genomic features and its correlation
with gene expression are more uncertain (3-5). Whereas
DNMT1 is thought to be primarily responsible for copying the
preexisting methylation to the newly synthesized DNA strand
during replication, DNMT3A and DNMT?3B display significant
affinity also for unmethylated DNA, and are therefore consid-
ered de novo methyltransferases (6, 7). DNA methylation is es-
sential during development: Various mouse models have shown
that the absence of Dnmtl or Dnmt3b is embryonically lethal,
and mice lacking Dnmt3a die within 4 wk after birth because of
their failure to thrive (6, 8); in humans, mutations in the DNMT3A4
gene are associated with an overgrowth syndrome with intellectual
disability (9). More specific to the hematopoietic compartment,
loss of Dnmt1 in hematopoietic stem cells (HSCs) led to defects in
self-renewal, niche retention, as well as altered cell differentiation,
especially toward the myeloid lineage (10), whereas loss of both
Dnmt3a and Dnmt3b impaired HSC self-renewal capabilities (11).
Importantly, aberrant DNA methylation is a hallmark of many
diseases, including autoimmune diseases and especially various
types of cancer (4, 5). Mutations in DNMT3A have been found in
a variety of hematological malignancies (4, 12, 13), including
systemic mastocytosis, a clonal proliferative disorder of mast cells
(14), pointing toward a role for DNMT3A in modulating mast cell
biology. Further correlating DNA methylation with the biology of
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mast cells (which are key effector cells in asthmatic and allergic
responses), a recent survey compared atopic and asthmatic pa-
tients with healthy controls and identified 81 differentially meth-
ylated regions (15); the hypomethylated regions included genes
such as IL13, which is not only crucial in asthma pathogenesis but
is also expressed at high levels by mast cells (16). Finally, high-
lighting the potential relevance of understanding the role of DNA
methylation in mast cell biology, altered DNA methylation pat-
terns were identified in patients with mast cell activation disease, a
complex disorder characterized by aberrant release of mast cell-
derived mediators (17). We therefore set out to investigate the
role of DNA methylation in general and DNMT3A in particular in
regulating mast cell differentiation and function.

We found that mast cells lacking Dnmt3a appeared to be more
responsive to stimuli compared with their wild-type counterparts.
Among other phenotypes, stimulation with IgE and antigen
complexes triggered a significantly stronger acute response in
mast cells lacking Dnmt3a, including higher cytokine production
and increased degranulation capacity. Such phenotypes were
recapitulated or exacerbated by treatment of the cells with the
demethylating agent 5-aza-2'-deoxycytidine as well as by re-
ducing Dnmtl expression, further supporting the notion that
DNA methylation-regulated processes are important modulators
of mast cell activation. Mechanistically, these effects were likely
to be mediated, at least in part, by the dysregulated expression of
the scaffold protein IQGAP2 (IQ motif-containing GTPase-
activating protein 2), and led to exacerbated in vivo responses in
both acute and chronic models of mast cell activation, namely
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passive cutaneous anaphylaxis and oxazolone-induced dermatitis.
Our results indicate that appropriate regulation of DNMT3A-
mediated processes modulates mast cell responses to environ-
mental stimuli, both in vitro and in vivo, and may be relevant in all
types of mast cell activation diseases.

Results

Increased Susceptibility to IgE Stimulation of Mast Cells Lacking
Dnmt3a. The mRNAs of the three DNA methyltransferases
were expressed at relatively high levels in HSCs, and their levels
decreased upon differentiation to mast cells (Fig. S14). How-
ever, all of them remained expressed at detectable levels in
differentiated mast cells, with Dnmt1 displaying the highest rel-
ative expression, Dnmt3b the lowest, and Dnmt3a expressed at
intermediate levels (Fig. 14 and Fig. S14). Expression of all
Dnmts was induced upon acute stimulation of mast cells with IgE
and antigen complexes (Fig. 14), with Dnmt3a being the most
inducible (about 13.8-fold after 6 h of stimulation), suggesting a

potential role for this enzyme in modulating mast cell responses
following activation. Mice genetically deleted for Dnmt3a are
runt (Fig. S1B), and die perinatally within 4 wk after birth (6).
We found that differentiation to mast cells was unchanged in the
absence of Dnmt3a, and the resulting gross phenotype was
undistinguishable regardless of the genotype (Fig. S1C). How-
ever, Dnmt3a knockout (KO) mast cells showed a significant
increase in proliferation compared with their wild-type (WT)
counterparts (Fig. 1B). This is in accordance with the fact that
DNMT3A4 is frequently mutated in myeloid neoplasms, including
systemic mastocytosis (14), and deletion of this enzyme predis-
poses the cells to myeloid transformation (18). To assess whether
such increased proliferation was also associated with increased
survival in vitro, mast cells were transiently deprived of the es-
sential survival factor IL-3. Removal of IL-3 from the culture
medium led to an overall increase in cell death, which was,
however, much more pronounced in the absence of Dnmt3a (Fig.
1C), potentially pointing toward an increased susceptibility of these
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Fig. 1. Mast cells lacking Dnmt3a display a complex phenotype. (A) WT differentiated mast cells were either stimulated with IgE and antigen (Ag) for 6 h or

left untreated. After RNA extraction, expression of the indicated Dnmt mRNA was assessed by qRT-PCR. PCR primers used in this study are listed in Table S1.
n =5 independent experiments. Mean + SEM. TBP, TATA-box-binding protein. (B) Mast cell proliferation was assessed between weeks 4 and 7 of differ-
entiation by BrdU incorporation. One representative experiment is shown (Left); each dot represents one experiment. Mean + SEM; unpaired t test, two-
tailed. (C) Mast cells were deprived of IL-3 for 48 h prior to staining with an Aqua Dead dye to determine cell survival. Shown is the percentage of dying mast
cells (Kit* Aqua Dead™) in the absence of IL-3 in n = 3 independent experiments. Mean + SEM; unpaired t test, two-tailed. (D) Degranulation of mast cells was
measured by annexin V staining upon stimulation with IgE and antigen complexes for 30 min. Each dot represents one experiment. Mean + SEM; unpaired t
test, two-tailed. (E) Mast cell degranulation upon stimulation with either IgE and antigen complexes or phorbol 12-myristate 13-acetate (PMA) and ionomycin
(P+1) was measured by p-hexosaminidase release. P+l stimulation was used as a positive control to induce maximum degranulation. n = 4 independent ex-
periments. Mean + SEM; unpaired t test, two-tailed. n.s., not significant.
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cells to perturbations in their microenvironment. We therefore
assessed mast cell responses to physiological stimulation with IgE
and antigen. Interestingly, upon acute stimulation, mast cells lacking
Dnmt3a showed significantly increased ability to release the content
of their cytoplasmic granules, as assessed both by annexin V binding
[which occurs at sites of secretory granule fusion with the plasma
membrane (19-21)] and release of B-hexosaminidase (an enzyme
normally stored in cytoplasmic granules) in the culture supernatant
(Fig. 1 D and E). Similarly, production of IL-6, TNF-a, and IL-13
(cytokines secreted by mast cells at high levels in response to IgE
stimulation) was also increased in Dnmt3a-deleted cells, as assessed
both by intracellular staining (Fig. 24 and B) and ELISA (Fig. 2C).

Dysregulated DNA Methylation Activity Leads to Increased Mast Cell
Responses. To further evaluate the impact of DNA methylation
on the ability of mast cells to respond to external stimuli, we
treated WT and KO cells for 48 h with 5-aza-2’-deoxycytidine
(decitabine; DAC), a drug commonly used for the treatment of
myelodysplastic syndromes and known to inhibit DNA methyl-
transferase enzymes (22). Such treatment led to global genomic
hypomethylation in mast cells (Fig. 34), which not only corre-
lated with increased capacities of WT mast cells to produce cy-
tokines but also further exacerbated the phenotype displayed by
KO mast cells (Fig. 3B). To further investigate the role of DNA
methylation in mast cell responses, we used shRNAs to down-
modulate the expression of Dnmtl (Dnmt3b was expressed by
mast cells only at extremely low levels; Fig. 14). Reducing Dnmt!
expression provided WT mast cells with increased degranulation
capabilities (Fig. 3 C and D). Such an increase in degranulation
was very prominent especially for one of the two shRNAs tested
(sh2), which also showed the highest reduction in Dnmtl expres-
sion (Fig. 3C). Interestingly, reduction of Dnmtl expression did
not further increase the ability of Dnmt3a KO cells to degranulate
in response to IgE stimulation (Fig. 3D), suggesting that Dnmt3a
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Fig. 2.

KO cells may have already reached their maximum degranulation
capacity in response to IgE and antigen stimulation.

The DNA methylation status of different cell types, including
cells of the hematopoietic lineage, with or without Dnmt3a, has
been previously studied (23-25): First, HSCs lacking Dnmt3a
showed global 5SmC levels that were comparable to those of
control cells, with a very modest number of differentially meth-
ylated regions (24). In agreement with these findings, we found
that overall levels of genomic SmC were not significantly dif-
ferent in WT and KO mast cells, despite a trend toward slightly
diminished levels in KO cells (Fig. S1D). Second, the differen-
tially methylated regions identified in Dnmt3a-null cells showed
substantial hyper- as well as hypomethylation at a variety of
genomic regions, with very little correlation between changes in
methylation and differential gene expression in the absence of
Dnmt3a in both mouse and human cells (4, 24, 25). These ob-
servations suggest the existence of both direct and indirect ef-
fects due to the loss of Dnmt3a, and potentially also the existence
of DNMT3A activities that are independent of its DNA catalytic
activity (26), similar to what has been described for the catalyt-
ically inactive DNMT3L (27), some of the DNMT3B isoforms
(28), and even for the TET family of DNA-modifying enzymes
(29, 30). To gain more insight into the mechanisms that may
underlie increased mast cell responses in the absence of Dnmt3a,
we therefore investigated global gene expression in WT and KO
mast cells.

Altered Gene Expression and Chromatin Accessibility in the Absence
of Dnmt3a. Using Illumina microarrays, we performed gene ex-
pression analyses of WT and KO mast cells, either resting or
stimulated with IgE and antigen, for 4 and 24 h. Triplicate bi-
ological samples were used and data were quantile-normalized.
Differentially expressed transcripts were identified by analysis of
variance (ANOVA) (P value < 0.05). We found that upon
stimulation of KO cells, most transcriptional changes were of
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Increased cytokine production in the absence of Dnmt3a. (A) Intracellular staining for the indicated cytokines in mast cells stimulated with IgE and antigen for

3 h. One representative experiment is shown. SSC, side-scatter. (B) Same as A; each dot represents one experiment. Mean + SEM; paired t test, two-tailed (****P <
0.0001). (C) Release of IL-6 and TNF-a in the supernatant was measured by ELISA after 12 h of stimulation. n = 4 independent experiments. Mean + SEM.
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Fig. 3. Increased mast cell responses upon disruption of DNA methylation activities. (A) Differentiated mast cells were treated with 0.5 and 5 pM 5-aza-2'-
deoxycytidine for 48 h, after which genomic DNA was extracted and overall levels of 5mC were quantified by dot blot. (B) Mast cells were treated with 0.5 uM
DAC for 3 d before stimulation with IgE and antigen and measurement of cytokine production by intracellular cytokine staining. Mean + SEM; unpaired t test,
two-tailed. (C) Mast cells were transduced with lentiviral vectors (sh1 and sh2) expressing shRNAs to knock down expression of Dnmt1. A vector expressing an
irrelevant hairpin (shLuc) was used as control. After puromycin selection of the transduced cells, total RNA was extracted and the extent of Dnmt7 down-
regulation was measured by qRT-PCR. Shown are the compiled results of three independent experiments. Mean + SEM; unpaired t test (relative to the
shLuc sample), two-tailed. (D) Same as C, except that cells were stimulated with IgE and antigen prior to measurement of the extent of degranulation by

B-hexosaminidase release. Shown are the compiled results of three independent experiments. Mean + SEM; unpaired t test, two-tailed.

limited magnitude compared with WT cells, and these especially
included changes in the levels of expression of many cytokine
and chemokine genes (Fig. 44). For instance, the Tnf gene was
induced 8.7-fold in KO cells and 3.6-fold in WT cells after 4 h
(Fig. 44). Similarly, the /13 gene was induced 7.9-fold in KO
cells and 6.2-fold in WT cells. These findings were also in
agreement with the increased cytokine production observed in
KO cells by intracellular staining and ELISA (Fig. 2). We did not
detect any compensatory increase in Dnmtl and/or Dnmt3b ex-
pression in the absence of Dnmt3a. We therefore focused our
attention on genes that were differentially expressed between
WT and KO cells, regardless of stimulation (Fig. 4B). Overall,
2,654 genes were significantly differentially expressed in mast
cells in the absence of Dnmt3a; of these, only 76 genes were up-
regulated at least 1.5-fold and 100 genes were down-regulated at
least 1.5-fold, indicating that the extent of transcriptional effects
was overall rather subtle. We validated some selected genes by
quantitative (q)RT-PCR using independent biological samples
(Fig. 4C). Genes that were up-regulated in KO cells included C2,
encoding for the complement component C2 of the classical C3
convertase, Gpx3 (glutathione peroxidase 3), and Sycel (syn-
aptonemal complex central element protein 1), encoding for a
protein involved in chromosome segregation (31). Genes that
were down-regulated in KO cells included Hoxb4, encoding for a

Leoni et al.

transcription factor (TF) involved in development and a positive
regulator of HSC self-renewal (32); the TF Sox/2 (33); and
Iggap2, encoding for a scaffold protein with a variety of different
functions (34).

To gain a better understanding of the mechanisms that could
lead to dysregulated gene expression in the absence of Dnmt3a,
we performed ATAC-seq (assay for transposase-accessible
chromatin sequencing) (35) to assess the overall accessibility of
genomic regions in WT and Dnmit3a KO mast cells. We found
that many regions were more accessible in Dnmt3a KO mast cells
compared with WT (4,139 regions enriched in KO cells vs. 1,567
regions enriched in WT cells) (Fig. 54). Such regions were
similarly distributed in WT and KO cells between promoter,
intronic, and intergenic regions (Fig. 5B). Most importantly, a
GREAT (Genomic Regions Enrichment of Annotations Tool)
analysis (36) of the regions specifically enriched in KO cells
revealed gene ontology categories that were highly correlated
with the phenotype observed in the absence of Dnmt3a (Fig. 5C),
most notably “mast cell degranulation” and “mast cell activa-
tion.” Moreover, pointing toward dysregulated TF binding and
RNA polymerase II (Pol II) recruitment, other significant cate-
gories for Dnmt3a KO cells included “activating transcription
factor binding” and “basal RNA Pol II transcription machinery
binding.” Overall, these data indicate that the absence of Dnmt3a
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Reducing Iqgap2 Expression Is Sufficient to Increase Mast Cell
Degranulation. Among the differentially expressed genes in the

results in increased accessibility of genomic regions that may be
involved in regulation of mast cell activation.
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absence of Dnmt3a, Iqgap2 showed a large decrease in expression
in KO cells (about —54.5%; Fig. 4C). IQGAP proteins (IQGAP],
2, and 3) are widely expressed proteins with the ability to regulate
very diverse biological processes, including cytoskeleton dynamics,
vesicle trafficking, cell proliferation, intracellular signaling, and TF
activity (34). Most importantly, T lymphocytes from IQGAPI-
deficient mice displayed increased production of cytokines, and
both IQGAP1 and IQGAP2 were shown to interact with the long
noncoding RNA NRON (noncoding RNA repressor of NFAT),
known to interfere with nuclear import of the TF NFAT (37, 38).
We therefore hypothesized that altered expression of Iggap2 could
explain, at least in part, the various phenotypes observed in acti-
vated mast cells lacking Dnmt3a, including increased cytokine

production and degranulation. First, we measured the expression
of the other two family members, Iqgapl and Iggap3, and found
that, contrary to Iggap2, their expression was slightly increased in
KO cells, although in a nonsignificant manner (Fig. 64). IQGAP
proteins are, however, known to act as a scaffold for many
interacting partners: We therefore assessed the effect of de-
pleting Iggap? itself by transient transfection of siRNAs in WT
differentiated mast cells. Two days after transfection, the av-
erage reduction in Iggap2 expression compared with a control
oligonucleotide was ~68% (Fig. 6B), indicating effective knock-
down to levels comparable to those observed in KO cells (Fig. 4C).
Importantly, such down-regulation of Iggap2 expression corre-
sponded to a significant increase in mast cell degranulation (Fig.
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Fig. 6. Reduced expression of Iggap2 is sufficient to increase mast cell degranulation. (A) Expression of IQGAP family members Iqgap1 and Iqgap3 was
measured by qRT-PCR in WT and KO mast cells. Each dot represents one experiment. Mean + SEM; unpaired t test, two-tailed. (B) Mast cells were transiently
transfected with a pool of siRNAs to knock down Iggap2 expression. Forty-eight hours after transfection, total RNA was extracted and the extent of Iqgap2
down-modulation was assessed by qRT-PCR. Each dot represents one experiment. Mean + SEM; paired t test, two-tailed (****P < 0.0001). (C) Same as B,
except that transfected cells were stimulated with IgE and antigen, and their ability to degranulate was measured by the release of B-hexosaminidase en-
zyme. n = 4 independent experiments. Mean + SEM; unpaired t test, two-tailed. (D) Cells were treated as in C, except that cytokine production was measured
by intracellular staining. Each dot represents one experiment. Mean + SEM; paired t test, two-tailed. () WT and KO mast cells were transduced with a
lentiviral vector to stably express HA-NFAT1(4-460)-GFP. After selection, cells were stimulated with IgE and antigen for the indicated times, and nuclear
translocation of HA-NFAT1(4-460)-GFP was followed over time using a fluorescence microscope. Representative of n = 8 independent experiments. (F) Same
as B, except that protein extracts were prepared from transduced cells and the extent of HA-NFAT1(4-460)-GFP dephosphorylation upon stimulation was
assessed by Western blot using an anti-HA antibody. (G) Nuclear translocation of endogenous NFAT1 upon stimulation of WT and KO cells with 0.5 pM
ionomycin was visualized by immunofluorescence using an anti-NFAT1 antibody. Nuclei were counterstained with DAPI. (H) Calcium flux was measured by
flow cytometry in WT and KO cells loaded with Fluo-4 AM and stimulated with IgE anti-DNP antibody and HSA-DNP antigen as well as ionomycin. Shown are
the compiled data of n = 5 independent experiments. Mean + SEM; two-way ANOVA. MFI, mean fluorescence intensity.
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6C), whereas cytokine expression showed just a very modest in-
crease, which was statistically significant only for IL-13 (Fig. 6D).
Notably, mast cell proliferation and survival were not significantly
altered in WT mast cells upon knockdown of Iggap2 (Fig. S24),
despite an initial modest increase in cell death, which, however,
normalized over time. These data point toward different mecha-
nisms of regulation of acute (degranulation, cytokine production)
and homeostatic (proliferation, survival) responses in mast cells.
Because IQGAP1 and IQGAP2 were shown to interfere with
nuclear translocation of NFAT (37, 38), and NFAT is required
for efficient transactivation of cytokine genes in mast cells (39,
40), we assessed whether nuclear translocation of NFAT was
somehow affected in KO cells, due to the altered expression of
Iqgap family members. First, we transduced WT and KO cells to
stably express comparable levels of a reporter NFAT-GFP fusion
protein (41), and then we assessed nuclear translocation of the
reporter protein with a fluorescence microscope (Fig. 6E). Upon
stimulation with IgE and antigen, we observed comparable
NFAT nuclear translocation in both WT and KO cells, with
comparable kinetics. Moreover, NFAT-GFP nuclear export at
later time points of stimulation also appeared to be comparable

in WT and KO cells (Fig. 6E). Similarly, we found that the extent
and kinetics of NFAT-GFP dephosphorylation and rephos-
phorylation upon stimulation with IgE and antigen were also
comparable between WT and KO cells by Western blot (Fig. 6F).
A similar trend was observed also for endogenously expressed
NFAT1 (Fig. 6G), ruling out the possibility that increased NFAT
translocation in KO cells could somehow contribute to the in-
creased responsiveness of Dnmt3a KO cells. Accordingly, flow
cytometry measurements of changes in calcium concentration
upon WT and KO mast cell stimulation revealed only a modest
trend toward slightly increased Ca®* concentration in KO cells,
which was, however, not statistically significant and of in-
sufficient magnitude to alter the kinetics of NFAT translocation
(Fig. 6H and Fig. S2B). We also assessed the levels of DNA
methylation specifically at the Iggap2 locus (Fig. 74) by re-
striction enzyme accessibility assay (REAA) and methylated
DNA immunoprecipitation (MeDIP). First, by performing
REAA analysis, we observed that the gene body of Iggap2 was
overall methylated in both WT and KO cells, whereas both the
core and distal promoter regions were mostly hypomethylated
(Fig. 7B). Consistent with the published observation that dif-
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Fig. 7.

Methylation analysis of the Iggap2 locus. (A) Schematic representation (not to scale) of the /ggap2 locus, with the location of the primers used for

REAA and MeDIP-PCR indicated, as well as the location of the restriction sites (Mspl/Hpall) required for REAA. Numbered boxes represent exons. (B) REAA of
the Iggap2 locus: Purified genomic DNA of WT and KO cells was either left untreated (=) or digested with the methylation-insensitive enzyme Mspl (M) or its
CpG methylation-sensitive isoschizomer Hpall (H) before PCR analysis. Representative of n = 2 or 3 independent experiments, depending on the region.
Numbers below the bands represent the relative quantification (to input WT) of band intensity. The sizes of the PCR products are indicated in the scheme in A.
(C) To check for the efficiency of the IP reaction in all MeDIP experiments, control DNA, containing in vitro methylated and nonmethylated pUC19 plasmid at
a ratio of 1:4, was added to every sample before the IP. The combination of plasmid-specific PCR primers with Ncol restriction digestion (site present only in
the methylated plasmid) confirmed the specific enrichment of methylated DNA in all MeDIP experiments. Shown is one representative experiment out of
at least four. (D) MeDIP-PCR of the Iqgap2 locus: Sonicated genomic DNA from WT and KO cells was immunoprecipitated with an anti-5mC antibody.
Shown is the percentage of immunoprecipitated methylated DNA relative to the input for each region. Each dot represents one independent experiment.

Mean + SEM; unpaired t test, two-tailed.
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ferentially methylated regions in Dnmt3a-null cells showed sub-
stantial hyper- as well as hypomethylation at a variety of genomic
regions (4, 24, 25), we found that an intergenic region in the
proximity of the Iggap2 locus was substantially hypomethylated
in KO cells (Fig. 7B). Because REAA is not sensitive enough to
measure small differences in methylation levels, we performed a
MeDIP analysis on these same regions. First, we optimized the
IP method using as spike-in a mixture of two plasmids, either
unmethylated or in vitro methylated, at a ratio of 4:1. As shown
in Fig. 7C, before the IP, a PCR specific for the spike-in plasmids
amplified primarily the more abundant unmethylated plasmid,
whereas after the IP, we recovered only the methylated form of
the plasmid (containing an extra Ncol restriction site that
allowed for size discrimination of the PCR product), confirming
the specificity of the process. By performing MeDIP on WT and
KO mast cells, we found that the distal promoter, core promoter,
and gene body regions of Iggap2 showed a modest increase in
DNA methylation in the absence of Dnmt3a (Fig. 7D). At the
core promoter region, results were more variable and differences
were smaller, most likely due to the fact that this region co-
incided with a CpG island and was for the most part hypo-
methylated. The intergenic region appeared to be slightly
demethylated in KO cells, concordant with the results of the
REAA. Whether such differences in DNA methylation between
WT and KO cells are sufficient to justify the observed altered
expression of the Iggap2 gene remains to be understood. Other
mechanisms, direct or indirect, may also lead to altered Iggap2
expression in Dnmt3a KO cells. Overall, our data suggest that
diminished Iggap2 expression may contribute, at least in part, to
the increased degranulation and cytokine production observed in
mast cells lacking Dnmt3a, that such phenotypes appear to be
NFAT-independent, and that it only partially correlates with
changes in DNA methylation at the Iggap2 locus.

Exacerbated in Vivo Responses in the Absence of Dnmt3a on Acute
and Chronic Mast Cell Activation. Because mast cells lacking
Dnmit3a appeared phenotypically normal but with an increased

propensity to respond to stimulation with enhanced cytokine pro-
duction and degranulation activity, we assessed acute responses
(which are primarily dependent on the release of mast cell
granules) in an in vivo model of anaphylaxis-associated vascular
hyperpermeability (passive cutaneous anaphylaxis) as well as
chronic responses in a model of oxazolone-induced derma-
titis (Fig. 84). For passive cutaneous anaphylaxis, we per-
formed adoptive transfer of WT and KO cells in KitWsh/W=sh
mice (42) by intradermal injection. Following reconstitution,
mast cells were sensitized with IgE-anti-DNP antibody fol-
lowed by systemic injection of antigen together with Evans
blue dye (Fig. 8 A and B). As a measure of mast cell activa-
tion, we quantified the cutaneous extravasation of the dye
after extraction from the tissue (Fig. 8B). In agreement with the
increased responses observed in KO mast cells in vitro, we ob-
served a significantly enhanced response of KO mast cells also
during acute responses in vivo (Fig. 8B).

Allergic diseases are usually associated with repeated expo-
sures to the allergen, which over time lead to chronic in-
flammation and tissue remodeling. Chronic responses in tissues
are the result of a complex interplay between stromal cells and
various immune cells, including mast cells, which can secrete
several mediators with the potential to influence tissue remod-
eling. Oxazolone induces a T cell-dependent allergic contact
hypersensitivity, which also involves mast cells and evolves over
time into a chronic allergic inflammatory response that resem-
bles atopic dermatitis (43). We therefore investigated whether
the increased inflammatory response of Dnmt3a KO mast cells
could also play a role during chronic responses. After adoptive
transfer of WT and KO mast cells into Kit" "WV mice, the skin
was first sensitized with 1% oxazolone, followed by repeated
challenges with 0.5% oxazolone (Fig. 84). We found that also in
this chronic model, Dnmt3a KO mast cells acted in a more
proinflammatory manner compared with their WT counterparts,
leading over time to significantly increased ear thickness (Fig.
8C). Because the extent of inflammation in this model was shown
to be dependent on mast cell-derived IL-2 production (43),
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Fig. 8.

Increased acute and chronic inflammatory responses in vivo in the absence of Dnmt3a. (A) Schematic representation of the experimental design for

passive cutaneous anaphylaxis and oxazolone-induced contact sensitivity experiments. BMMCs, bone marrow-derived mast cells. (B) For passive cutaneous
anaphylaxis experiments, the ear pinnae of Kit"*MV=h mice were reconstituted with WT or KO mast cells. After ~5 wk, ears were sensitized intradermally
with IgE and then challenged 24 h later by i.v. injection of antigen in the presence of Evans blue dye. The dye was then extracted and measured. Each dot
represents one mouse (WT, n = 17; KO, n = 14). Mean =+ SD; unpaired t test, two-tailed. (C) Mice were reconstituted as in B, except that they were then
challenged with 1% oxazolone, followed, 7 d later, by repeated challenges with 0.5% oxazolone. The extent of inflammation was assessed by measuring
swelling of the ears. Data include measurements of eight mice (mean + SD) and are representative of n = 2 independent experiments. Comparisons between
the groups were performed by two-way ANOVA. **P = 0.0061, ***P < 0.0001, ****P < 0.0001. (D) WT and KO cells were stimulated for 5 h with PMA and
ionomycin before intracellular cytokine staining for IL-2 expression. Each dot represents one experiment. Mean + SEM; paired t test, two-tailed.
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which has been implicated in the control of allergic diseases, we
also measured mast cell-derived IL-2 by intracellular cytokine
staining. We found a significant decrease in the ability of Dnmit3a
KO cells to produce IL-2 (Fig. 8D), strongly suggesting that the
capacity of KO cells to produce increased levels of inflammatory
cytokines, coupled with the reduced production of IL-2, deter-
mines overall exacerbated responses to both acute and chronic
stimulation. Overall, our data uncover a role for Dnmit3a in
restraining mast cell proinflammatory responses.

Discussion

DNMT3A is one of the most frequently mutated genes in hema-
tological malignancies and, due to extensive research, its role in
cancer is becoming clearer (44, 45). Although we found a relative
increase in the ability of mast cells to proliferate in the absence of
Dnmt3a, most of the major phenotypes we observed in these cells
were actually linked to acute and chronic cell activation, both in
vitro and in vivo. Although the role of DNA methylation in general
and DNMT?3A in particular in allergy, asthma, and mast cell acti-
vation disorders is far from being completely understood, several
studies have investigated the role of Dnmt3a in regulating cytokine
production in T lymphocytes (reviewed in ref. 5). For example, the
112, II4, and Ifng cytokine genes are regulated by DNA methylation
in T cells (46-48) and, in the absence of Dnmitl or Dnmt3a (but not
Dnmit3b), T lymphocytes were unable to appropriately silence the
expression of Ifng or 114, resulting in unrestrained cytokine expres-
sion (49-51). T cells lacking Dnmt3a also showed increased 1113
transcription (51), similar to the phenotype we observed in mast
cells and, accordingly, these lymphocytes led to increased lung
inflammation in a murine model of asthma, further highlighting
the importance of DNA methylation in modulating the activity
and pathogenesis of complex diseases such as allergy and asthma.
Here, we found that not only did loss of Dnmt3a lead to enhanced
cytokine production in mast cells in response to IgE and antigen
complexes but it also led to increased degranulation, suggesting
that dysregulated DNA methylation may have a profound effect
on mast cell-related diseases.

The complex phenotype resulting from the genetic deletion of
Dnmt3a is likely the end result of a number of direct and indirect
effects acting on the regulation of gene expression at multiple
levels. Regulation of gene expression is not a linear one-to-one
process but a network of interactions between multiple chro-
matin- and DNA-modifying enzymes, TFs, and cofactors, as well
as posttranscriptional regulators such as RNA-binding proteins
and microRNAs (miRNAs), all acting in concert to determine a
final outcome (52). For instance, altered DNA methylation
patterns can interfere directly with the recruitment of readers of
DNA methylation and with the binding of TFs, potentially leading
to a cascade of altered TF recruitment and gene expression, which
eventually hinders normal cellular functions. Apart from TFs and
cofactors able to directly or indirectly bind the chromatin and
translate DNA methylation information into a transcriptional out-
come, miRNAs represent some of the factors with a complex in-
terplay with DNA methylation. Indeed, not only DNA methylation
can alter miRNA expression and consequently expression of
downstream genes; miRNAs are also known to fine-tune the ex-
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pression of target DNA-modifying enzymes. For example, the miR-
29 family was shown to target DNMT1, DNMT3A, and DNMT3B,
leading to global DNA hypomethylation and reexpression of tumor
suppressor genes in acute myeloid leukemia cells (53). Although our
preliminary screening did not identify any major significant modifi-
cation in the global miRnome of Dnmt3a KO mast cells, we iden-
tified miR-223 as a dysregulated miRNA in the absence of Dnmit3a
(Fig. S2C). We found that expression of this miRNA was re-
producibly reduced in Dnmt3a KO mast cells compared with their
WT counterparts, and such reduction could also indirectly contrib-
ute to the increased ability of Dnmit3a KO mast cells to degranulate
in response to acute stimulation. Indeed, down-regulation of miR-
223 was recently shown to promote mast cell degranulation in re-
sponse to IgE stimulation (54).

Although the role of DNA methylation in stabilizing gene
expression during development and cell-fate decisions and in
maintaining memory of cellular identity is well-established (55,
56), its role during acute stimulation of already-differentiated
cells is more nuanced and less understood. In this respect, as
mentioned above, T lymphocytes have been studied more ex-
tensively than other cell types, showing in general unrestrained
expression of genes related to effector functions. Our data pro-
vide clear evidence about a role for DNA methylation in general
and Dnmt3a in particular in restraining responses of differentiated
mast cells, suggesting that a more general role of DNA methyl-
ation in at least some types of differentiated cells may be to buffer
and restrict excessive responses to environmental stimuli.

Materials and Methods

Mice and Cell Cultures. Dnmt3a knockout mice were purchased from The
Jackson Laboratory, where they were generated as described (57). The
Dnmt3a-deleted allele lacks exons 13 to 17 of the protein, roughly corre-
sponding to part of the ATRX~-DNMT3-DNMT3L domain and part of the
catalytic domain, and leads to no detectable expression. Heterozygous in-
tercrosses were used to generate age- and sex-matched KO and WT litter-
mates for use in all experiments shown. Mast cells were differentiated in the
presence of IL-3 as the essential survival and proliferation factor, as de-
scribed (58). All animal studies were performed in accordance with Swiss
Federal Veterinary Office guidelines and approved by the Cantonal animal
experimentation committee, Dipartimento della Sanita e della Socialita
Cantone Ticino (authorization nos. 02/2015 and 07/2015).

Gene Expression Omnibus Accession Numbers. Gene expression profiling: Data
are available for download at the Gene Expression Omnibus (GEO) database
under accession no. GSE87483. ATAC-seq: Data are available in the GEO
database under accession no. GSE91036.

Statistical Analysis. Statistical analysis was performed with Prism software

(GraphPad). Data are represented as mean + SEM or SD, and significance was

assessed by paired or unpaired Student’s t test, two-tailed, or two-way ANOVA.
Full materials and methods can be found in S/ Materials and Methods.
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