
 1

MiR-146a and NF-kB1 regulate mast cell survival and T lymphocyte 1 
differentiation 2 

 3 
 4 

Nicole Rusca1*, Lorenzo Deho’1*, Sara Montagner1, Christina E. Zielinski1,3, Antonio Sica2, 5 
Federica Sallusto1 and Silvia Monticelli1,# 6 

 7 
 8 

1Institute for Research in Biomedicine, Bellinzona, Switzerland 9 
 10 

2Istituto Clinico Humanitas, Rozzano, Italy 11 
 12 

3Present address: Department of Dermatology and Berlin-Brandenburg School for 13 
Regenerative Therapies, Charite´-Universitätsmedizin Berlin, Germany 14 

 15 
 16 

*Joint first authors. 17 
 18 
 19 

# Corresponding Author:  20 
Silvia Monticelli  21 

Via Vincenzo Vela 6  22 
Institute for Research in Biomedicine  23 

CH-6500 Bellinzona  24 
Switzerland 25 

Phone: +41 91 820 0354 26 
Fax: +41 91 820 0305 27 

E-mail: silvia.monticelli@irb.usi.ch  28 
 29 

 30 
 31 

Short Title: A molecular circuitry comprising NF-kB1 and miR-146a 32 
Keywords: microRNA, T lymphocytes, mast cells, immunological memory, activation, 33 

survival 34 
 35 
 36 

Word count, Material and Methods: 1228 37 
Word count, Introduction, Results and Discussion: 5430 38 

 39 

40 

 Copyright © 2012, American Society for Microbiology. All Rights Reserved.
Mol. Cell. Biol. doi:10.1128/MCB.00824-12 
MCB Accepts, published online ahead of print on 27 August 2012



 2

 Abstract  41 

The transcription factor NF-kB regulates the expression of a broad number of genes 42 

central to immune and inflammatory responses. We identified a new molecular network that 43 

comprises specifically the NF-kB family member NF-kB1 (p50) and miR-146a, and we show 44 

that in mast cells it contributes to the regulation of cell homeostasis and survival, while in T 45 

lymphocytes it modulates T cell memory formation. Increased mast cell survival was due to 46 

an unbalanced expression of pro- and anti-apoptotic factors, and particularly to the complete 47 

inability of p50-deleted mast cells to induce expression of miR-146a, which in the context of 48 

mast cell survival acted as a pro-apoptotic factor. Interestingly, in a different cellular context, 49 

namely human and mouse primary T lymphocytes, miR-146a and NF-kB p50 did not 50 

influence cell survival or cytokine production, but rather T cell expansion and activation in 51 

response to TCR engagement. Our data identify a new molecular network important in 52 

modulating adaptive and innate immune responses and shows how the same activation-53 

induced miRNA can be similarly regulated in different cell types even in response to different 54 

stimuli, but still determine very different outcomes, likely depending on the specific 55 

transcriptome. 56 

 57 

58 



 3

 Introduction 59 

 The NF-kB family of transcription factors comprises five related proteins (c-60 

Rel, RelA, RelB, NF-kB1 (p50) and NF-kB2), which are critical regulators of immunity, 61 

stress response, apoptosis and differentiation, and bind as dimers to kB sites in promoters and 62 

enhancers of a variety of genes to induce or repress transcription (reviewed in (25)). The 63 

crucial role played by this transcription factor in orchestrating immune responses is 64 

highlighted by the number of stimuli that can elicit NF-kB activation, including bacterial and 65 

viral infections, inflammatory cytokines and engagement of antigen receptors. As a 66 

consequence, dysregulation of NF-kB activity is linked to inflammatory disorders, 67 

autoimmune diseases, as well as cancer (25). Given the wide range of cellular responses 68 

regulated by NF-kB, it is not surprising that its activity must be tightly controlled at multiple 69 

levels by positive and negative regulatory elements. MicroRNAs (miRNAs) are now widely 70 

established modulators of many aspects of the immune responses (13). MiR-146a in particular 71 

is a well-studied modulator of the immune system (31), known to regulate NF-kB activation 72 

and tolerance in innate immunity (36), to act as an oncosuppressor, and to modulate T 73 

regulatory (Treg) cell functions (17, 42). 74 

 Mast cells are key effector cells in immediate hypersensitivity reactions and 75 

allergic disorders. Mice lacking the transcription factor p50 are unable to mount airway 76 

eosinophilic inflammation in the lung due to the inability to produce IL-4, IL-5 and IL-13, 77 

and to a defect in the polarization of Th2 lymphocytes (5, 29, 41). Despite the important role 78 

of mast cells in allergy and asthma and as a source of Th2-type cytokines, mast cell responses 79 

were never specifically evaluated in these mice. Here, we investigated whether p50 may have 80 

a role in regulating mast cell differentiation, homeostasis and function, as it could improve 81 

our understanding of the molecular mechanisms at the basis of mast cell-related diseases such 82 

as asthma, allergy and even mastocytosis. Specifically, we identified a role for p50, but also 83 
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for miR-146a, whose transcription was completely dependent on p50, in regulating mast cell 84 

homeostasis and cell survival. Interestingly, the same molecular network involving p50 and 85 

miR-146a acted also at the level of T lymphocytes to modulate immunological memory. 86 

Memory T cells can be broadly separated into central memory (TCM) that express the 87 

chemokine receptor CCR7 and recirculate through lymphoid organs, and effector memory 88 

(TEM) that lack CCR7 and preferentially home to nonlymphoid tissues (33). Specifically, we 89 

found that the absence of p50 (and as a consequence, of miR-146a), led preferentially to a 90 

TCM phenotype and accordingly, both human and mouse T cells forced to express higher 91 

levels of miR-146a preferentially differentiated towards a TEM -like phenotype. 92 

 Overall, we provide evidence that in the absence of p50, mast cells showed 93 

altered tissue homeostasis and survival due to increased expression of pro-survival factors 94 

such as Bcl-2 and A1, as well as reduced expression of pro-apoptotic factors such as Bax and 95 

miR-146a. The latter in particular acted in this context as a modulator of NF-kB signaling by 96 

targeting TRAF6 and reducing mast cell survival. Interestingly, in T cells miR-146a had no 97 

role in regulating T cell survival or cytokine production, but it emerged as an important 98 

regulator of T cell expansion and memory formation. 99 

 100 

101 
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 Material and Methods 102 

 Cell cultures and cell stimulation. Bone marrow-derived mast cells 103 

(BMMCs) from C57Bl/6 mice and p50-deleted mice (34) were differentiated in vitro by 104 

culturing total bone marrow cells for at least three weeks in IMDM medium containing 10% 105 

FBS, 2mM L-glutamine, 0.1mM non-essential amino acids, 50μM β-mercaptoethanol, 106 

antibiotics and 50% WEHI-3 conditioned supernatant as a source of IL-3. WEHI-3 107 

conditioned supernatant was prepared exactly as described (19). When indicated, SCF 108 

(10ng/ml, Peprotech) was also added to the cultures during mast cell differentiation. Cell 109 

differentiation was assessed by surface staining for FcεRI and Kit receptor and by toluidine 110 

blue staining as described (19). Mast cells were acutely stimulated with either 1.5μg/mL IgE-111 

anti-DNP (clone SPE7, Sigma) and 0.2μg/ml DNP-HSA (Sigma), or with 20-100μg/mL LPS, 112 

depending of the experimental conditions. In some cases, cells were stimulated with 20nM 113 

PMA and 2μM ionomycin. Primary human T lymphocytes were purified from peripheral 114 

blood and expanded as described (21). T cells were stimulated with immobilized anti-CD3 (1-115 

10μg/mL) and anti-CD28 (2μg/mL), and expanded in presence of 500U/mL rhIL-2. Blood 116 

from healthy donors was obtained from the Swiss Blood Donation Center of Basel and 117 

Lugano, and used in compliance with the Federal Office of Public Health. Mouse naïve CD8 118 

and CD4 T cells were purified using beads (Dynal or Miltenyi Biotec) from spleen and lymph 119 

nodes of OT-I, OT-II or C57Bl/6 mice, and FACS-sorted as CD62L+ CD44–. Naïve CD4 T 120 

cells were cultured in Th1/Th2 skewing conditions exactly as described (1, 22). All animal 121 

studies were performed in accordance with the Swiss Federal Veterinary Office guidelines 122 

and were approved by the Dipartimento della Sanita’ e della Socialita’ (approval numbers 123 

17/2010, 18/2010 and 03/2012). 124 
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Plasmids, lentiviral and retroviral transductions. The control lentiviral vectors 125 

were previously described and expressed either an shRNA against luciferase (shLuc), a non-126 

targeting hairpin (NT) or GFP alone (18). The 394bp PCR fragment encompassing the pre-127 

miR-146a genomic sequence was cloned using standard cloning techniques. Depending on 128 

the experimental conditions, transduced cells were either selected with puromycin (2μg/mL 129 

for two days) or FACS-sorted for GFP expression. To optimize transgene expression, the 130 

same miR-146a or control insert was driven by the spleen focus-forming virus promoter 131 

(SFFVp) for transductions of mast cells, and by the EF1alpha promoter for transductions of 132 

human T lymphocytes. Lentiviral particles were produced exactly as described and used at a 133 

multiplicity of infection of ~60 (19, 44). Retroviral particle were generated by transient 134 

transfection of Phoenix cells as previously described (24). 135 

 qRT-PCR. Total RNA was extracted using TRIzol reagent (Invitrogen). To 136 

analyze miRNA expression, qRT-PCR was performed using a miRNA reverse transcription 137 

kit and TaqMan miRNA assays from Applied Biosystems, following exactly the 138 

manufacturer’s instructions. To analyze Bcl-2 family member expression, total RNA (1μg) 139 

was reverse transcribed using the iScript kit (Bio-Rad), before PCR amplification with the 140 

following primers: bcl2 FW: 5’-TTCGCAGCGATGTCCAGTCAGCT; bcl2 RV: 5’-141 

TGAAGAGTTCTTCCACCACCGT; A1 FW: 5’-GATTGCCCTGGATGTATGTGCTTA; A1 142 

RV: AGCCATCTTCCCAACCTCCATTC; bcl-XL FW: 143 

CAGTGCCATCAATGGCAACCCATC; bcl-XL RV: 5’-144 

CGCAGTTCAAACTCATCGCCTGC; bax FW: 5’-ACTGGACAGCAATATGGAGCTG; 145 

bax RV: 5’-CCCAGTTGAAGTTGCCATCAG. β-actin was used as an endogenous control. 146 

 Apoptosis and proliferation. For cell death analysis, mast cells were washed 147 

extensively to remove all IL-3 and/ or SCF from the culture medium and were either left 148 

resting or were stimulated with IgE and antigen. Apoptosis was evaluated using the 149 
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AnnexinV-PE apoptosis kit (BD Pharmingen) following manufacturer’s instructions. For 150 

thymidine incorporation assays, 1x105 mast cells were stimulated for 24h, and in the last 16h 151 

of incubation, 1µCi/mL of [3H]thymidine (GE Healthcare) was added to the cultures. Cells 152 

were then collected and levels of thymidine incorporation were evaluated with a scintillation 153 

beta-counter. 154 

 Degranulation assay. Mast cell degranulation was assessed as described (18). 155 

Briefly, 5x104 cells were resuspended in 50μL OptiMEM, 1% FBS and stimulated for 1h with 156 

either PMA and ionomycin or IgE-antigen complexes. The supernatant was collected and the 157 

cell pellet was lysed in 50μL of 0.5% Triton-X100 in OptiMEM, 1% FBS. The β-158 

hexosaminidase substrate (4-nitrophenyl N-acetyl-β-D-glucosaminidate (Sigma)) was then 159 

added to both the cell lysates and supernatants (50μL of 3.8mM solution). After incubation 160 

for 2h at 37°C, the reaction was stopped with 90μL glycine 0.2M, pH 10.7, and the 161 

absorbance was read at 405nm. The percentage of degranulation was calculated as the ratio 162 

between the absorbance of supernatants and the total absorbance of supernatants and cell 163 

lysates. 164 

 Intracellular cytokine staining. Cells were stimulated with either PMA and 165 

ionomycin, IgE and antigen complexes, or LPS for 3-5h, with addition of 10μg/mL brefeldin-166 

A in the last 2h of stimulation. The cells were then fixed with 4% paraformaldehyde and 167 

permeabilized in 0.5% saponin/ 1% BSA prior staining with fluorescent anti-cytokine 168 

antibodies (eBioscience) and FACS analysis.  169 

 Western Blots and Immunofluorescence staining. For Western blots, total 170 

protein extracts were prepared by direct lysis of the cells in Laemmli sample buffer. Samples 171 

were separated on 12% SDS-polyacrylamide gels and immune-detection was performed with 172 

antibodies against NF-kB p50 (NLS), TRAF6 (H-274) and, as a loading control, β-Tubulin 173 

(H-235) (all from Santa Cruz Biotechnologies). Quantification was performed with a 174 
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biomolecular imager (ImageQuant LAS 4000). For immunofluorescence staining, tissue 175 

slides of paraffin-embedded organs from wild-type and p50-deleted mice were de-176 

paraffinized, rehydrated and stained with 2μg anti-mast cell tryptase antibody (FL-275, Santa 177 

Cruz Biotechnologies), followed by an anti-rabbit AlexaFluor-594 secondary antibody 178 

(Invitrogen). Nuclei were counter-stained with DAPI. Images were captured with a Nixon 179 

Eclipse E800 microscope and analyzed with the Openlab software (Improvision). 180 

 Passive cutaneous anaphylaxis (PCA) and peritoneal lavages. For passive 181 

cutaneous anaphylaxis experiments, 1x106 differentiated BMMCs were injected intradermally 182 

(i.d.) in the ear pinna of mice lacking mast cells (KitW-sh/W-sh, Jackson Laboratory) (8). Four 183 

weeks after reconstitution, transferred mast cells were sensitized by i.d. injections of IgE-anti-184 

DNP (1.5μg/mL), and challenged 24h later with intravenous (i.v.) injections of 250μg/mL 185 

DNP-HSA together with 5mg/mL Evans-blue dye to assess extravasation. Mice were 186 

sacrificed 30min after challenge and the blue dye was extracted from the tissues by incubation 187 

in formamide at 63°C O/N. Intensity of the blue dye (correlating with the extent of 188 

extravasation and therefore mast cell activation) was measured spectrophotometrically 189 

(OD600). Presence of mast cells in the reconstituted ears was assessed by toluidine-blue 190 

staining of paraffin-embedded ears. For peritoneal lavages, the total number of recovered cells 191 

was assessed by manual counting, while the percentage of mast cells was evaluated by surface 192 

staining for Kit and FcεRIα and FACS analysis. 193 

 Transfection of naïve T cells. Sorted naïve (CD4+ CD8– CD62Lhi CD44lo) T 194 

cells were transfected with Amaxa mouse T cells nucleofector kit following manufacture’s 195 

instructions, using program X-01. Cells were rested for at least 3h after transfection and prior 196 

stimulation with plate-bound anti-CD3 and anti-CD28 for 48h. 197 

 Adoptive transfer of mouse T cells and immunization. Sorted CD8 or CD4 198 

naïve T cells were obtained from spleen and lymph nodes of C57Bl/6, OT-I or OT-II mice 199 
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and injected (1x106 cells/ mouse) in C57Bl/6 recipients. Mice were then challenged sub-200 

cutaneously with CFA-OVA and naïve, effector and memory cells were obtained from the 201 

spleen and draining lymph nodes 4 days (effector) or two weeks (memory) after challenge, 202 

and they were sorted in the different subsets based on the expression of CD4, CD8, CD62L, 203 

CD44 and CD127. 204 

 CFSE labeling. CFSE labeling was performed using a CellTrace cell 205 

proliferation kit (Invitrogen). Briefly, 1x106-107 naïve T cells (human or mouse) were labeled 206 

with 5μM CFSE for 8min at 37°C prior extensive washing and antigenic stimulation. 207 

 Statistical analysis. Results are expressed as a mean ± s.d. or s.e.m. 208 

Comparisons were made using the unpaired t-test and the GraphPad Prism Software. 209 

 210 

  211 

212 
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 Results 213 

 Elevated numbers of mast cells in the absence of NF-kB p50. Mice lacking 214 

p50 (p50ko) are unable to mount airway eosinophilia inflammation due to the inability to 215 

produce IL-4, IL-5 and IL-13, and to a defect in the polarization of Th2 lymphocytes (5, 29, 216 

41). Since mast cells are master effector cells in asthmatic and allergic responses, we 217 

evaluated whether such asthma-resistant phenotype could be partially due to a defect in mast 218 

cell development or function. First, we evaluated the numbers of mast cells in the tissues of 219 

p50ko animals. In the peritoneal lavages of control and p50ko mice, the total number of cells 220 

and the percentage of mast cells were assessed respectively by manual counting and by 221 

surface staining for FcεRIα and Kit. Surprisingly, the percentage of mast cells recovered from 222 

the peritoneal cavity in the absence of p50 was significantly augmented  (p<0.0002) 223 

compared to control animals (Figure 1A). The percentage of Gr-1+ cells was also 224 

significantly increased in the peritoneal lavage of p50ko mice relative to controls. A similar 225 

kind of increase in the presence of mast cells was also observed in the small intestine of 226 

p50ko animals compared to C57Bl/6 mice, as assessed by immunofluorescence staining using 227 

two different mast cell markers (Tryptase or Kit) (Figure 1B). These results showed an overall 228 

increase in mast cells in the tissues of p50ko animals, without however revealing any 229 

alteration in the homing properties of these cells. Indeed, mast cells were found in all tissues 230 

and compartments where they are normally present, but not in organs, like the spleen or liver, 231 

where they are usually not found (not shown). Having ruled out that the asthma-resistant 232 

phenotype of p50ko animals does not correlate with the number of mast cells in these mice, 233 

and considering that mast cells are able to produce very high amounts especially of IL-13, we 234 

assessed the ability of these cells to respond to a variety of stimuli. 235 

  236 
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 Reduced cytokine production in mast cells lacking p50. Similarly to 237 

controls, in vitro differentiated, bone marrow-derived p50ko mast cells were homogenously 238 

FcεRIα+ Kit+, expressed granzyme B and mMCP5 (not shown), and looked phenotypically 239 

normal as assessed by toluidine blue staining (Supplementary Figure 1A). Since the 240 

percentage of mast cells was increased in the tissues of p50ko animals relative to C57Bl/6 241 

mice, we asked whether the absence of p50 could favor cell proliferation. As assessed by 242 

thymidine incorporation assay, p50ko cells proliferated similarly to the controls in all 243 

condition tested (Figure 1C). Next, we evaluated whether the impaired Th2 responses 244 

observed in these mice could be partially explained by an altered ability of mast cells to 245 

perform their effector functions (degranulation, cytokine production) in response to acute 246 

stimulation. The extent of mast cell degranulation was assessed both in vitro, by measuring 247 

release of β-hexosaminidase from cytoplasmic granules upon stimulation (18), and in vivo, by 248 

transferring mast cells into mast cell-deficient recipient mice (KitW-sh/W-sh) and performing 249 

passive cutaneous anaphylaxis (PCA) experiments. Even in the absence of p50 mast cells 250 

degranulated normally in response to IgE crosslinking or PMA and ionomycin stimulation, 251 

both in vitro and in vivo (Figure 1D-E). In PCA experiments, efficient mast cell reconstitution 252 

of the ear pinna was confirmed by toluidine blue staining of paraffin-embedded tissue 253 

sections (Figure 1F).  254 

 Next, we evaluated the ability of p50ko mast cells to produce cytokines, and 255 

we focused mostly on cytokines, such as IL-13, that are highly expressed by mast cells and 256 

have essential and non-redundant roles in allergy and asthmatic responses (10, 23, 38). 257 

Control and p50ko cells were stimulated with either LPS or IgE crosslinking, and expression 258 

of IL-6, TNF-α and IL-13 was assessed by intracellular cytokine staining (Figure 2A-C). 259 

Interestingly, mast cells lacking p50 showed reduced cytokine production in response to both 260 

LPS and IgE-Ag complexes, which was not due to altered expression of the surface receptors 261 
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FcεRI or TLR4 (Figure 2D). Reduced cytokine expression was particularly evident for IL-13, 262 

which is the cytokine necessary and sufficient for asthmatic responses in models of 263 

experimental asthma (10, 38) (Figure 2B-C). Despite the increased number of mast cells in 264 

the tissues of p50ko animals, reduced IL-13 production from p50ko mast cells may therefore 265 

contribute to the asthma-resistant phenotype and overall lack of eosinophilia and Th2 266 

responses observed in these mice. However, our data so far could not explain the increased 267 

mast cell numbers observed in the tissues of p50ko mice, which is what we set out to 268 

investigate next. 269 

 270 

Increased survival in the absence of p50 correlates with increased expression of 271 

anti-apoptotic genes. Given the increased number of tissue mast cells despite the normal 272 

proliferation capacity, we investigated whether p50ko mast cell were significantly affected in 273 

their ability to survive in response to IgE crosslinking and/ or withdrawal of essential 274 

cytokines. The essential survival factors IL-3 and/ or SCF were removed from the culture 275 

medium, with or without concomitant stimulation with IgE, which are known to provide a 276 

survival signal for mast cells, by inducing anti-apoptotic factors (14, 39). In all conditions 277 

tested p50ko cells showed a consistently increased ability to survive compared to the controls 278 

(Figure 3A-C). As expected, stimulation with IgE partially rescued control cells from 279 

apoptosis, but this effect was much more pronounced in the absence of p50 (Figure 3C). To 280 

get an insight in the molecular mechanism that could explain such enhanced survival, we 281 

evaluated the expression of candidate pro- and anti-apoptotic genes. Indeed, NF-kB binding 282 

sites have been identified in promoters and enhancers of a number of inducible genes 283 

involved in cell death, including Bcl-2, A1 and Bcl-XL (14, 39). In particular, Bcl-2 is a 284 

known regulator of IL-3 withdrawal-dependent apoptosis, while A1 is a specific regulator of 285 

IgE-dependent survival in mast cells (14, 39). We therefore investigated whether these factors 286 
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may be involved in regulating survival in the absence of p50. To this end, p50ko and control 287 

cells were either left resting or were stimulated with either IgE crosslinking or LPS, after 288 

which expression of pro- and anti-apoptotic gene candidates was assessed by qRT-PCR 289 

(Figure 3D-G). Interestingly, both bcl2 and A1 were upregulated in cells lacking p50. Such 290 

upregulation was already evident at basal levels, but it became even more pronounced upon 291 

stimulation with IgE-DNP or LPS (Figure 3D-E). Expression of another pro-survival factor, 292 

bcl-XL, was slightly diminished in p50ko cells (Figure 3F), as well as the expression of the 293 

pro-apoptotic gene bax (Figure 3G). Since Bcl-2 and especially A1 were already shown to be 294 

involved in regulating mast cell survival, it is likely that the overall net increase of pro-295 

survival factors is at the basis of the observed enhanced survival of p50ko cells. Our data 296 

therefore show that p50ko mast cells exhibit increased survival in response to a variety of 297 

stimuli, and that such enhanced survival is likely due to a profound alteration in the balance 298 

between pro- and anti-apoptotic factors, with the latter being overall favored. 299 

  300 

 MiR-146a regulates mast cells survival, but not cytokine production or 301 

LPS desensitization. Since miRNAs are known to be involved in the regulation of a variety 302 

of cell functions, we assessed whether they might also be involved in regulating the enhanced 303 

survival and reduced cytokine production observed in p50ko mast cells. We assessed in 304 

particular expression of two miRNAs (miR-146a and miR-221) that we found to be inducible 305 

in mast cells and to be dependent on NF-kB (18, 20, 36). P50ko and control mast cells were 306 

either left resting or were stimulated with PMA and ionomycin for 24h, after which 307 

expression of miR-146a and miR-221 was assessed by qRT-PCR. MiR-27a expression was 308 

also measured as a control since it should not change upon stimulation of mast cells. 309 

Strikingly, p50ko mast cells showed specifically impaired expression of miR-146a in 310 

response to stimulation in all conditions tested, including PMA and ionomycin, IgE 311 
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crosslinking or LPS stimulation (Figure 4A-B), indicating that p50 is indeed absolutely 312 

required for the expression of this miRNA. Vice versa, expression of miR-221, also known to 313 

be inducible upon mast cell stimulation in a NF-kB-dependent manner (20), was comparable 314 

between p50ko cells and controls, indicating that for miR-221, but not miR-146a expression, 315 

the lack of p50 can be compensated by the presence of other NF-kB subunits. 316 

 Since p50ko cells are completely unable to induce miR-146a expression, and it 317 

is known that miR-146a is itself a regulator of NF-kB activation (36), we asked whether at 318 

least part of the phenotype observed in mast cells in the absence of p50 could be due to the 319 

inability of these cells to induce miR-146a expression. We therefore transduced mast cells 320 

with either a control lentiviral vector (shLuc, expressing an irrelevant hairpin), or a vector 321 

expressing miR-146a, and we asked whether miR-146a expression led to altered survival in 322 

mast cells. Indeed, mast cells transduced with miR-146a showed consistently increased cell 323 

death compared to control cells, even when cultured in medium supplemented with all 324 

survival factors (Figure 4C-D). As a control, to confirm that our lentivirally-derived miR-325 

146a was indeed properly functional, we evaluated levels of expression of the known miR-326 

146a target, Traf6 (36). Western blot analysis showed a significant decrease in Traf6 327 

expression whenever miR-146a was expressed, in both p50ko and control cells (Figure 4E). 328 

Interestingly, forced miR-146a expression led to an only modest reduction of bcl2 expression 329 

in p50ko cells, indicating that although miR-146a works in the same pathway as p50, forced 330 

miR-146a expression is not sufficient to completely compensate and revert the phenotype 331 

induced by the lack of p50 (Figure 4F). Along the same line, we did not observe any 332 

particular effect of miR-146a on IL-6 and TNFα expression (Figure 4G).  333 

 Repeated stimulation of cells can result in loss of responses. MiR-146a is 334 

known to regulate tolerance to LPS in macrophages (36), and given the inability of p50ko 335 

mast cells to induce miR-146a expression in response to LPS, we assessed whether these cells 336 
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might be impaired in their responses to sequential stimulations with LPS. However, mast cells 337 

lacking p50 showed a reduction in cytokine production in response to acute LPS stimulation, 338 

but responded similarly to control cells, becoming unresponsive to subsequent stimulations 339 

with LPS (Supplementary Figure 1B-C), indicating that such LPS-dependent 340 

unresponsiveness in mast cells is not strictly dependent on miR-146a.  341 

  342 

 MiR-146a is highly expressed in the T cell memory compartment from 343 

both human and mouse. Since we previously reported that miR-146a is differentially 344 

expressed between Th1 and Th2 T cell subsets in the mouse (22), we asked whether the novel 345 

molecular network we identified in mast cells, involving miR-146a and p50, could also be at 346 

play in regulating T lymphocyte polarization, which was also shown to be altered in mice in 347 

the absence of p50 (5). In mouse CD4 T cells we found that miR-146a was indeed expressed 348 

at higher levels in Th1 cells compared to Th2 (Figure 5A), however, it remained inducible in 349 

both T cell subsets upon restimulation, with high strength of TCR stimulation correlating with 350 

high levels of miR-146a expression and also with high and sustained number of cell cycles, as 351 

assessed by CFSE dilution (Figure 5B). We therefore hypothesized that miR-146a could have 352 

a role in regulating T cell activation and expansion rather than T cell polarization. In line with 353 

this hypothesis, we found that miR-146a expression was consistently elevated in the effector 354 

and memory compartment (TEM and TCM) in both CD4 and CD8 murine T cells (Figures 5C-355 

D). Similarly to CD4 T cells, naïve CD8 T cells activated in vitro with anti-CD3 and anti-356 

CD28 showed increased expression of miR-146a (Figure 5D, left panel). Next, we reasoned 357 

that if miR-146a is an important regulator of T cell polarization and/ or activation, such 358 

process should be conserved also in human T cells. Human TH1 and TH2 cells, either 359 

differentiated in vitro or separated ex vivo from peripheral blood, did not show any 360 

differential expression of this miRNA (Figure 5E and Supplementary Figure 2A). However, 361 
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similarly to mouse T cells, resting human CD4 lymphoctyes retained the ability to activate 362 

expression of miR-146a once restimulated and even more importantly, miR-146a was 363 

expressed at high levels in memory T cells isolated ex vivo from peripheral blood (Figure 5F-364 

G). These data indicate that miR-146a is unlikely to play a major role in T cell polarization in 365 

both human and mouse (except probably Treg cells in which it is expressed at high levels 366 

((17) and Supplementary Figure 2A), but point towards a role in regulating lymphocyte 367 

activation and/or in the establishment of immunological memory.  368 

  369 

 MiR-146a influences cell expansion, but not cell death of primary human 370 

lymphocytes. To further investigate the role of miR-146a specifically in human lymphocytes, 371 

and to assess whether it could modulate cell survival, similarly to mast cells, human CD4 T 372 

cells were lentivirally transduced to express GFP, alone or in combination with miR-146a 373 

(Figure 6A). Levels of miR-146a in transduced cells were overall lower or comparable to the 374 

physiological levels of endogenous expression observed in lymphocytes upon TCR 375 

stimulation (Supplementary Figure 2B). However, we found that primary human T cells 376 

expressing miR-146a did not show any significant alteration in Fas-mediated cell death or in 377 

CD95 expression or in the ability to survive in response to withdrawal of IL-2 378 

(Supplementary Figure 2C-D and data not shown). Moreover, we observed no significant 379 

effect of miR-146a on IL-2, IFN-γ or IL-4 cytokine production (Supplementary Figure 2E and 380 

data not shown). 381 

 While we did not observe any effect on cell death, memory human T cells 382 

expressing miR-146a showed increased expansion after restimulation with anti-CD3 and anti-383 

CD28 (Figure 6B). Specifically, cells expanded similarly up to ~day 4-5 after stimulation, 384 

regardless of miR-146a expression, but miR-146a-expressing cells continued to expand more 385 

vigorously then control cells in the subsequent days, an effect that was especially evident in 386 
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the absence of exogenous IL-2, indicating that this miRNA could act directly in response to 387 

TCR stimulation to favor cell expansion (Figure 6B). The fact that cytokine production was 388 

largely unaffected by miR-146a in all conditions tested, ruled out the possibility that miR-389 

146a-expressing cells could sustain their own proliferation through increased IL-2 production. 390 

We also performed adoptive transfer experiments in which mouse OT-II naïve T cells 391 

transfected with either miR-146a mimic or non-targeting control were transferred into a 392 

recipient mouse. A few days after challenge with OVA, both the draining lymph node and the 393 

spleen showed a slightly higher percentage of transferred cells whenever miR-146a was 394 

present, suggesting increased expansion abilities following challenge (Supplementary Figure 395 

3A-B). Finally, in a different experimental setting, human naïve T cells were transiently 396 

transfected with a miR-146a mimic and then stimulated with allogeneic PBMC, after which 397 

the percentage of activated T cells was assessed. Consistently with the results obtained using 398 

lentiviral vectors, we observed a reproducible, albeit small, increase in the percentage of 399 

activated cells whenever miR-146a was present (Supplementary Figure 3C). 400 

  401 

MiR-146a regulates CCR7 expression. While IL-2 does not significantly contribute 402 

to the initial cycling of antigen-stimulated T cells, it is nevertheless necessary for the 403 

successful generation of memory responses (12). Indeed, the IL-2 signal strength has been 404 

shown to contribute to the differentiation of murine CD8 TEM and TCM (28). In our culture 405 

system, the absence of IL-2 uncovered a TEM-like phenotype, with inability to sustain CCR7 406 

expression and expansion after TCR stimulation (Figure 6C-D). Interestingly, miR-146a 407 

expression determined a reduction of CCR7 expression in all conditions tested, indicating that 408 

not only miR-146a contributed to T cell expansion upon TCR stimulation, but it may also 409 

modulate the establishment of a TEM-like phenotype (with reduced CCR7 expression) in 410 

primary human lymphocytes (Figure 6E). Since most of our experiments so far were 411 
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performed on memory TH1, TH2 and TH17 cells subsets isolated from peripheral blood and 412 

restimulated in vitro, to better assess the effect of miR-146a during the first antigenic 413 

stimulation of naïve T cells, we lentivirally transduced human naïve T cells freshly isolated 414 

from peripheral blood to express miR-146a. Three days after transduction GFP+ cells were 415 

sorted and stimulated with plate-bound anti-CD3 and anti-CD28, and five days after 416 

stimulation total RNA was extracted and levels of expression of miR-146a and CCR7 were 417 

assessed by qRT-PCR. As a control, we also measured expression of the known miR-146a 418 

target TRAF6. Similarly to memory cells, naïve T cell expressing miR-146a showed reduced 419 

CCR7 and TRAF6 expression (Figure 6F). However, the reduction in CCR7 expression was 420 

very selective, as we could not observe any alteration in the expression levels of CD25, 421 

CD45RA, CD45RO, CD62L or CD127 (data not shown). Moreover, such effect of miR-146a 422 

is unlikely to be exerted directly on CCR7, which is not a predicted target for this miRNA 423 

(16). 424 

It was shown that mice with a T cell-specific deletion of TRAF6 mounted robust CD8 425 

effector responses, but had a profound defect in their ability to generate memory cells (26). 426 

To further demonstrate that TRAF6 is indeed a target for miR-146a in primary T lymphocytes 427 

we also performed reporter assay experiments using the 3’untranslated region (3’UTR) of 428 

TRAF6, and found that it was efficiently targeted by miR-146a in both Jurkat cells and 429 

primary murine Th2 cells (Supplementary Figure 3D). Our data point towards a role for miR-430 

146a in regulating human T cell responses and memory formation possibly through the 431 

modulation of TRAF6 expression. 432 

 433 

Dysregulated T cell memory formation in the absence of the p50/ miR-146a 434 

molecular circuitry. Since we showed that miR-146a dysregulation could influence T cell 435 

memory formation, leading to a CCR7lo, TEM-like phenotype, and we also found that in mast 436 
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cells miR-146a expression was fully dependent on p50 expression, we looked into T cell 437 

activation and memory formation in the absence of p50 (and therefore in the absence also of 438 

miR-146a).  First, we assessed whether miR-146a expression was indeed impaired in the 439 

absence of p50 also in T lymphocytes. Naïve CD8 and CD4 T cells were isolated from p50-440 

deleted animals and were stimulated in vitro with plate-bound anti-CD3 and anti-CD28 for 5 441 

days, after which they were either left resting or were restimulated with PMA and ionomycin 442 

(P+I) for 6h. Similarly to mast cells stimulated with either IgE or LPS, T cells (both CD4 and 443 

CD8) lacking p50 were completely unable to induce miR-146a expression, neither upon TCR 444 

engagement of naïve T cells, nor upon restimulation (Figure 7A-B). Moreover, there was no 445 

significant difference between p50-deleted T cells and controls in IFNγ, IL-4 and IL-2 446 

cytokine production, as assessed by intracellular cytokine staining (data not shown). We 447 

therefore analyzed the memory compartment of p50-deleted mice ex vivo. As shown in Figure 448 

7C, in the absence of p50, both the CD4 and especially the CD8 T cell compartment showed a 449 

striking increase in the TCM compartment, and a reduction of effector cells, even in the 450 

absence of any challenge. Importantly, sorted p50ko naïve T cells differentiated in vitro for 5 451 

days also showed a TCM-like phenotype, with high expression of CD44 and CD62L and 452 

intermediate expression of CD25 (Figure 7D), indicating that the absence of p50 and miR-453 

146a intrinsically favors naïve T cell differentiation to a TCM phenotype, independently of 454 

thymic development. However, forced expression of miR-146a in p50ko CD4 T cells by 455 

either retroviral transduction or transient transfection could not rescue the phenotype observed 456 

in the absence of p50 (Figure 7E-G), indicating once again that miR-146a alone is not able to 457 

fully compensate for the lack of a transcription factor, at least in our in vitro experimental 458 

settings.  459 

  460 

 461 
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  462 

 Discussion  463 

 NF-kB is involved in regulating many aspects of cellular activity during an 464 

immune response, and activation of this transcription factor by receptors of the innate and 465 

adaptive immune response is essential for host defense (reviewed in (25)). Almost all danger-466 

sensing receptors activate NF-kB to mediate effector functions, however, NF-kB-driven 467 

responses must be promptly terminated once danger is eliminated, as aberrant NF-kB activity 468 

can directly lead to uncontrolled tissue damage and disease (reviewed in (30)). 469 

 Here, we found that the absence of one specific NF-kB family member, p50, 470 

improved mast cell survival in response to a variety of signals. The underlying mechanism for 471 

such enhanced survival involved increased expression of pro-survival factors such as Bcl-2 472 

and A1, as well as reduced expression of pro-apoptotic factors such as Bax and miR-146a, 473 

which in this context acted as a pro-apoptotic factor and as a modulator of NF-kB signaling 474 

by targeting Traf6. In our current working model NF-kB activation in mast cells can occur as 475 

a result of FcεRI crosslinking or TLR4 engagement leading to nuclear translocation of p65-476 

p50 heterodimers that activate transcription of both anti-apoptotic factors (such as bcl2 and 477 

A1) as well as of pri-miR-146a, which acts as a negative regulator of NF-kB activation 478 

(Supplementary Figure 4A-C). In the absence of p50, not only some survival factors are 479 

strongly upregulated, but the negative feedback on NF-kB activation is lost, as miR-146a 480 

cannot be expressed, reinforcing the positive survival signal. The fact that in the context of 481 

mast cell survival miR-146a acts as a pro-apoptotic factor is also highlighted by the fact that 482 

forced expression of miR-146a leads to increased cell death. 483 

 What remains to be investigated is the mechanism by which NF-kB p50 may 484 

act as a positive regulator of some genes (namely miR-146a, for which p50 is essential), and 485 
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as a negative regulator of other genes (namely Bcl-2 and A1, whose expression is increased in 486 

both basal and activated conditions in the absence of p50). One possible explanation concerns 487 

the formation of compensatory heterodimers in the absence of p50 with an altered pattern of 488 

binding and activation. Indeed, the unique DNA-binding properties of distinct NF-kB dimers 489 

influence the selective regulation of NF-kB target genes. NF-kB dimers can be separated in 490 

three distinct DNA-binding classes based on their DNA-binding preferences: p50 or p52 491 

homodimers, heterodimers, c-Rel or RelA homodimers (35). Clearly, sites that are normally 492 

preferentially bound by p50 homodimers could become ‘free’ to be bound by other NF-kB 493 

family members in the absence of p50, altering regulation of transcription at these specific 494 

sites. Our initial data in this direction show that p65 nuclear translocation is normal in mast 495 

cells in the absence of p50, however its overall expression is slightly reduced (Supplementary 496 

Figure 1D). We have yet to uncover specific differences in promoter binding, which will be 497 

the topic of future work. Another possibility is that by lacking a transactivating domain, p50 498 

homodimers may negatively regulate expression of bcl2 and A1 in resting conditions, which 499 

is overcome by other activating heterodimers upon activation. For example, negative 500 

regulation by p50 homodimers has been reported to correlate with repression of NF-kB-501 

driven transcription in tolerant T cells (9), and tolerance to LPS in monocytes has been shown 502 

to involve LPS-dependent mobilization of NF-kB with a predominance of p50 homodimers 503 

(43). P50 homodimers are also known to be nuclear even in the absence of stimulation, which 504 

may explain the increased expression of Bcl-2 and A1 at basal levels in the absence of p50 (2, 505 

32). On the other hand, miR-146a expression remained exquisitely dependent on p50 in all 506 

conditions tested. Further experiments will elucidate the exact molecular mechanism 507 

responsible for the enhanced survival observed in mast cells in the absence of p50, and this 508 

will be the topic of future work. 509 
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 As for the observed increase of mast cells in the tissues of p50ko animals, the 510 

possibility remains that such alteration may arise from an increased ability of hematopoietic 511 

stem cells (HSC) in the bone marrow to differentiate more promptly to mast cells and/ or in 512 

general to the myeloid lineage. The increased number of mast cells could therefore be a 513 

composite effect of increased differentiation from stem cells, combined with a cell-intrinsic 514 

ability of the cells to survive in response to a variety of stimuli. A detailed analysis of HSC 515 

differentiation in the absence of p50 will surely provide new insights on the role of this 516 

transcription factor in hematopoietic differentiation, particularly to the myeloid lineage.  517 

 As opposed to mast cells, in T lymphocytes miR-146a did not regulate cell 518 

death, but rather influenced T cell activation upon TCR engagement. It is interesting to notice 519 

that in accordance with published data (4), we found that ectopic expression of miR-146a in 520 

Jurkat cells led to a mild reduction in apoptosis (data not shown). However, primary cells 521 

expressing miR-146a did not show any significant alteration in Fas-mediated cell death or in 522 

CD95 expression. Such discrepancy may be due to the fact that while in Jurkat cells 523 

activation-induced cell death (AICD) can be completely cell autonomous, primary T 524 

lymphocytes undergo AICD by making contact with their activated neighbors, resulting in 525 

‘fratricide’ rather than ‘suicide’ (3, 6, 7). Alternatively, miR-146a may have roles that vary in 526 

the different cell types depending on the type and relative abundance of mRNA targets that 527 

constitute the transcriptome of that specific cell, as we have shown for mast cells and T 528 

lymphocytes. We therefore propose a model in which miR-146a upregulation upon TCR 529 

stimulation contributes to the overall strength of signal arising from the TCR, by favoring cell 530 

activation and cell expansion, and by modulating the establishment of immunological 531 

memory, in particular by favoring a CCR7lo, TEM-like phenotype (Supplementary Figure 4D). 532 

 Importantly, it has recently been shown that mice lacking p50 have altered 533 

negative selection in the thymus and develop a population of single-positive CD8 thymocytes 534 
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with memory T cell-like properties that populate peripheral immune organs (11). Here, we 535 

were able to show that in the absence of p50 even highly purified naïve CD4 and CD8 T cells 536 

stimulated in vitro preferentially acquired a TCM-like phenotype, with high CD62L and 537 

moderate expression of CD25. While this effect is clearly dependent on the absence of p50, 538 

we speculate that it might also be due, at least in part, to the inability of these cells to express 539 

miR-146a in response to TCR stimulation. It would be interesting to estimate the proportion 540 

of the effect of a given transcription factor, such as NF-kB p50, that goes through the altered 541 

expression of a specific miRNA, like miR-146a. However, is has to be noted that miR-146a-542 

deleted mice showed normal proportions of CD4 and CD8 cells both in the thymus and in the 543 

periphery (17), and even in our hands in mast cells, miR-146a was only partially able to 544 

compensate for the lack of p50, indicating that at least in this case, the effect of a transcription 545 

factor remains predominant to that of the miRNA. Moreover, some of our data are also in line 546 

with a very recent publication showing that miR-146a also controls the resolution of T cell 547 

responses in mice and its absence leads to increase survival through modulation of bcl2 548 

expression (40). 549 

 As for targets of miR-146a, we found that TRAF6 was clearly targeted by this 550 

miRNA both in mast cells and primary T lymphocytes from human and mouse, similarly to 551 

what has been extensively shown for macrophages and other cell types (36). However, other 552 

targets for miR-146a have been suggested (17, 31), and TRAF6 may not be the only or the 553 

most relevant target for this miRNA in these particular cell context: for example, we showed 554 

for miR-221 that although some specific genes are targeted by this miRNA in mast cells, the 555 

effect of miR-221 does not go predominantly through these targets, and bioinformatics 556 

analysis clearly showed that miR-221 affected a few hundred primary and secondary targets 557 

(18). Nevertheless, in an attempt to phenocopy the effects of miR-146a, we attempted knock-558 

down experiments for TRAF6 in primary human T cells using siRNAs. While unfortunately 559 
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we were so far unable to draw definite conclusions from these experiments, it remains to be 560 

noted that mice with a T cell-specific deletion of traf6 mounted robust CD8 effector 561 

responses, but had a profound defect in their ability to generate memory cells (26), therefore 562 

resembling the increased TEM-like phenotype of our miR-146a-expressing cells. Moreover, 563 

Fas-mediated apoptosis in the absence of Traf6 was normal, and cells showed increased 564 

proliferation in response to TCR stimulation, again similarly to what we observed in miR-565 

146a-expressing cells (15). 566 

 Finally, as for the fact that miR-146a is expressed at higher level in Th1 567 

murine lymphocytes compared to Th2 (22), we think that such differential expression might 568 

be related to the strength of signal that favors one or the other phenotype, with stronger 569 

stimulation favoring Th1 responses (37). Further supporting this possibility, it has been 570 

suggested that strong stimulation is needed for commitment to TEM cells, whereas weaker 571 

stimulation favors the generation of less-committed TCM cells (27), indicating that miR-146a 572 

might play an important role in lowering the strength of signal required for full T cell 573 

activation and therefore mimic stronger TCR engagement resulting in increased activation 574 

and generation of TEM. Alternatively, IL-4 and/ or IL-12 signaling may also contribute to 575 

modulate expression of miR-146a in conjunction with TCR stimulation, a possibility that 576 

remains to be investigated. However, it has to be noted that we found no significant difference 577 

in miR-146a expression in human TH1, TH2 and TH17 cells, indicating that cytokine 578 

signaling may not be at play (Supplementary Figure 2A). Similarly to the mouse (17), this 579 

miRNA was instead expressed at very high levels in human Tregs. 580 

 Overall, our findings indicate that NF-kB p50 acts in a cell-autonomous 581 

manner in differentiated mast cells to favor survival in response to withdrawal of essential 582 

cytokines or antigenic stimulation, while in T lymphocytes it enhances TCR-dependent 583 

activation and modulates memory formation. This novel molecular network comprising 584 
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specifically p50 and miR-146a and regulating cell survival, tissue homeostasis, and T cell 585 

activation may have important implications for our understanding of the physiologic 586 

responses occurring for example during infections with helminthes parasites or allergic 587 

reactions, and possibly even in mast cell disorders such as systemic mastocytosis. 588 
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Figure Legends 733 

Figure 1. Increased tissue mast cells in mice lacking p50. A) Peritoneal lavage was 734 

performed on control and p50ko mice, and total cell numbers and percentages of mast cells 735 

(Kit+ FcεRI+), Mac-1+ and Gr-1+ cells were assessed by manual counting and FACS 736 

staining, respectively. Each dot represents one animal. B) Immunofluorescence staining of 737 

small intestine sections of control and p50ko mice. Mast cells were identified by staining with 738 

an anti-Tryptase antibody (shown, top), or an anti-Kit-antibody. At least 10 fields per tissue 739 

slide were observed and counted blindly (the operator counting the cells was not aware of the 740 

type of sample, which was coded) and the observed percentage of Tryptase + or Kit+ cells are 741 

plotted (bottom). C) Mast cell proliferation was assessed by thymidine incorporation assay. 742 

Control and p50ko mast cells were either left resting or were stimulated for 24h with IgE-Ag 743 

complexes or LPS prior addition of 3H-thymidine. Shown is one representative experiment 744 

out of three. D) To assess mast cell degranulation in response to acute stimulation in vitro, 745 

mast cells were either left untreated or were stimulated with IgE-Ag complexes or LPS for 1h 746 

prior measurement of β-N-acetylhexosaminidase release in degranulation assay. Shown is one 747 

representative experiment out of three. E) Mast cells were differentiated from C57Bl/6 and 748 

p50ko mice and injected intradermally (i.d.) in the ear pinna of KitW-sh/W-sh mice. Four weeks 749 

after injection, mast cells were sensitized by i.d. injection of IgE-anti-DNP and then 750 

challenged 24h later intravenously with DNP-HSA and Evans-blue to assess extravasation. 751 

Blue ear intensity was analyzed spectrophotometrically (OD600) after extraction with 752 

formamide. Pictures on the left show one representative experiment, and the graph shows the 753 

quantification of several experiments. Each dot represents one mouse. F) Effective mast cell 754 

reconstitution of the ear pinna performed as in E) was assessed by fixation and embedding in 755 

paraffin of the ear tissue followed by toluidine blue staining. 756 
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Figure 2. Reduced cytokine production in the absence of p50. A) Cells were either 757 

left untreated or were stimulated with IgE-Ag complexes or LPS prior analysis of IL-6 and 758 

TNFα expression by intracellular cytokine staining. B) Same as in A), except that IL-13 759 

production is shown. C) Same as in A) except that the percentage of cells positive for the 760 

indicated cytokine is provided. Each dot represents one independent experiment. D) (Top) 761 

Surface expression of FcεRIα in control and p50ko mast cells, unstimulated or stimulated 762 

with IgE and antigen for 24h to assess cell ability to upregulate FcεRIα expression. (Bottom) 763 

Expression of TLR4 on the surface of control and p50ko mast cells, unstimulated or 764 

stimulated with LPS for 3h. 765 

Figure 3. Enhanced survival and increased expression of anti-apoptotic factors in 766 

the absence of p50. Mast cells were cultured with IL-3 alone (A) or IL-3+SCF (B) prior 767 

removal of IL-3 or SCF for ~4 days. Analysis of cell death was performed by AnnexinV 768 

staining. The graph in panel A) shows the mean of four independent experiments, while panel 769 

B) is representative of at least two experiments. C) Same as in (A), except that cells were 770 

either left unstimulated or were stimulated with IgE and antigen at the time of initial IL-3 771 

withdrawal. Shown is one representative experiment out of two. D) P50ko and control cells 772 

were either left resting or were stimulated for 24h with IgE-Ag complexes (top) or LPS 773 

(bottom). Total RNA was extracted and A1 mRNA expression was assessed by qRT-PCR. 774 

Shown is one representative experiment out of four. E) Same as in D) except that expression 775 

of bcl2 was assessed. Shown is one representative experiment out four. F-G) Expression 776 

levels of bcl-XL (F) and bax (G) were analyzed by qRT-PCT in unstimulated control and p50-777 

deleted mast cells. Shown is one representative experiment out four for bax, and out of three 778 

for bcl-XL.  779 

Figure 4. MiR-146a is not expressed in mast cells in the absence of p50. A) 780 

Differentiated mast cells were either left resting or were stimulated with PMA and ionomycin 781 
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(P+I) for 24h prior analysis of the expression of miR-146a, miR-221 and miR27a by qRT-782 

PCR. SnoRNA202 was used as endogenous control. Shown is one representative experiment 783 

out of three. B) Same as in (A), except that cells were stimulated with either IgE and antigen 784 

(top) or LPS (bottom) for the indicated times. Shown is one representative experiment out of 785 

three. C) Mast cells were lentivirally (LV) transduced to express either miR-146a or an 786 

irrelevant hairpin as a control (shLuc). MiR-146a expression was assessed by qRT-PCR. D) 787 

Cells treated as in (C) were analyzed for apoptosis by AnnexinV staining. E) Cells treated as 788 

in (C) were lysed in Laemmli sample buffer and expression of Traf6 was analyzed by 789 

Western blot. β-tubulin was used as loading control and quantification was performed using 790 

an image reader. Shown is the ratio between the Traf6 and β-tubulin signals in one out of two 791 

independent experiments with similar results. F) Same as in (C), except that levels of 792 

expression of bcl2 were analyzed by qRT-PCR. G) Cells lentivirally transduced as in (C) 793 

were stimulated with IgE and antigen prior intracellular cytokine staining to assess IL-6 and 794 

TNFα expression. Each dot represents one independent experiment. 795 

Figure 5. Memory T cells express high levels of miR-146a, which is induced by 796 

TCR stimulation. A) Naïve CD4 T cells were isolated from the spleen and lymph nodes of 797 

C57Bl/6 or OT-II mice and differentiated to either Th1 or Th2. At day 5, cells were either left 798 

resting or were restimulated with PMA and ionomycin for 6h prior RNA extraction and qRT-799 

PCR for miR-146a (left) and intracellular cytokine staining to verify polarization (right). 800 

SnoRNA202 was used as endogenous control. B) Naïve CD4 T cells were isolated from the 801 

spleen and lymph nodes of C57Bl/6 or OT-II mice, were labeled with CFSE and stimulated 802 

with the indicated concentrations of anti-CD3 in the presence of anti-CD28 for 48h. The 803 

number of cycles was counted based on CFSE dilution (left) and miR-146a expression was 804 

evaluated in the same samples by qRT-PCR (right). C) Naïve CD4 T cells were isolated from 805 

the spleen and lymph nodes of OT-II mice, and were transferred i.v. into recipient C57Bl/6 806 
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mice prior challenge with OVA. Five and fifteen days after transfer TEM and TCM were FACS-807 

sorted (TEM: CD62Llo CD44hi CD127hi; TCM: CD62Lhi CD44hi, CD127hi) and miR-146a 808 

expression was measured by qRT-PCR. D) (Left) Same as in (C) except that OT-I naïve T 809 

cells were used and mice were challenged with either OVA or SIINFKL peptide. (Right) 810 

Purified naïve CD8 cells were stimulated in vitro with plate-bound anti-CD3 and anti-CD28 811 

for two days and further expanded up to day 6 with 10-100 U/mL of rIL-2, after which they 812 

were either left resting or were restimulated for 6h with PMA and ionomycin (P+I), prior 813 

analysis of miR-146a expression.  E) MiR-146a expression in human TH1 and TH2 clones 814 

was assessed by qRT-PCR (left). RNU48 was used as endogenous control. Clones were 815 

characterized by the expression of surface markers and by the expression of IFNγ and IL-4 816 

(right). F) Resting primary human CD4 cells were either immediately lysed in Trizol or were 817 

stimulated with plate-bound anti-CD3 and anti-CD28 for 3 and 6 days prior analysis of miR-818 

146a expression by qRT-PCR. G) Primary human CD4 T cells were sorted from peripheral 819 

blood as follows: naïve: CD4+ CD8– CD25– CD45RA+ CCR7+; TEM: CD4+ CD8– CD25– 820 

CD45RA– CCR7–; TCM: CD4+ CD8– CD25–CD45RA– CCR7+. Cells were lysed in Trizol 821 

immediately after sorting and miR-146a expression was assessed by qRT-PCR.  822 

Figure 6. MiR-146a expression in T cells led to enhanced expansion and reduced 823 

CCR7 expression upon TCR stimulation. A) (Top) Schematic of the lentiviral vector used. 824 

The control vectors expressed GFP alone or in combination with a non-targeting hairpin or an 825 

shRNA against luciferase. (Bottom) Primary human T cells (CD4+ CD45RA– CD25– CD8–) 826 

transduced with the indicated vector were sorted for GFP expression 2-5 days after 827 

transduction. Shown are cells obtained after sorting in one representative experiment. After 828 

initial experiments, TH1 (CXCR3+), TH2 (CCR4+) or TH17 (CCR6+ CCR4+) subsets were 829 

used interchangeably as provided identical results.  B) Primary human T cells transduced with 830 

either a miR-146a- or control-expressing vector were stimulated for 48h on plate-bound anti-831 
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CD3 and anti-CD28 in the presence or absence of 500U/mL IL-2, and then expanded for 6 832 

days with or without addition of exogenous IL-2. Cell number was assessed daily and plotted 833 

as fold expansion. The left panel shows one representative experiment while the right panel 834 

shows the mean result of four experiments (fold expansion at day 5 only). C) CCR7 surface 835 

expression was assessed on cells treated as in (B). Stimulated cells were homogenously 836 

CD45RA– CD25+. D) CCR7 mRNA expression was assessed by qRT-PCR in cells as in (C). 837 

E) Primary human T cells were transduced with the indicated lentiviral vectors, and CCR7 838 

mRNA expression was assessed 3-5 days after transduction. Representative of 4 independent 839 

experiments performed in various conditions (i.e. with or without exogenous IL-2, at resting 840 

state or upon restimulation with anti-CD3 and anti-CD28 for 3 days), all with comparable 841 

results. F) Primary naïve human T cells transduced with the indicated vectors were stimulated 842 

with plate-bound anti-CD3 and anti-CD28 for 5 days prior qRT-PCR to determine expression 843 

of miR-146a, CCR7, and TRAF6. Shown is one experiment out of two.  844 

Figure 7. TCM differentiation in the absence of p50 and miR-146a. A) CD8+ or B) 845 

CD4+ naïve T cells were sorted from the spleen and lymph nodes of p50ko and control mice 846 

and were either immediately lysed in Trizol or were stimulated for 2-5 days with plate-bound 847 

anti-CD3 and anti-CD28, after which they were either left resting or were restimulated with 848 

PMA and ionomycin (P+I) for 6h. RNA was extracted and expression of miR-146a assessed 849 

by qRT-PCR. C) Spleen and lymph nodes were collected from p50ko and control mice (3 850 

mice per group) and the percentage of naïve (CD62L+ CD44–), effector (CD62L– CD44+) 851 

and memory (CD62L+ CD44+) cells was evaluated in the CD4 and CD8 compartments. D) 852 

Naïve CD4 and CD8 T cells were FACS-sorted from the spleen and lymph nodes of p50ko 853 

and control mice (3 mice per group) and were stimulated for 5 days with plate-bound anti-854 

CD3 and anti-CD28, after which expression of CD44, CD62L and CD25 was assessed by 855 

FACS staining. E) Top: schematic representation of the retroviral vector used for transduction 856 
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of primary murine T cells, expressing either GFP alone or GFP and miR-146a. The insert was 857 

verified by sequencing and expression of vector-derived miR-146a evaluated in a separate 858 

transduction experiments of total wild-type CD4+ T cells (qRT-PCR graph at the bottom). 859 

Indicated below each bar are the percentages of GFP+, transduced cells. Untr.=untransduced 860 

control. F) Sorted naïve CD4+ T cells (CD62Lhi CD44lo) from p50ko mice were transduced 861 

with the indicated retroviruses 48h after initial activation with plate-bound anti-CD3 and anti-862 

CD28, and expression of CD62L and CD44 was assessed at day 5 after stimulation (day 3 863 

after transduction). Cells shown in the FACS-plots on the right were gated on the GFP+ cells. 864 

G) To assess whether changes in miR-146a expression during the first two days of T cell 865 

stimulation could be essential for the final outcome on the phenotype, which we could not 866 

investigate by using retroviruses, sorted naïve p50ko CD4+ T cells were transiently trasfected 867 

with Amaxa prior anti-CD3/ anti-CD28 stimulation. Transfection efficiency was assessed by 868 

using a non-targeting fluorescent oligo (siGLO, left panel). Expression of CD44, CD62L and 869 

CD25 was assessed at day 2, 3 and 4 after transfection. Shown is day 3 of one representative 870 

experiment out of two.  871 
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