13 research outputs found

    Errata Corrige on “Modeling and Computing Ternary Projective Relations Between Regions”

    Full text link
    We report a corrected version of the algorithms to compute ternary projective relations between regions appeared in E. Clementini and R. Billen, "Modeling and computing ternary projective relations between regions," IEEE Transactions on Knowledge and Data Engineering, vol. 18, pp. 799-814, 2006.Peer reviewe

    systemc based electronic system level design space exploration environment for dedicated heterogeneous multi processor systems

    Get PDF
    Abstract This work faces the problem of the Electronic System-Level (ESL) HW/SW co-design of dedicated electronic digital systems based on heterogeneous multi-processor architectures. In particular, the work presents a prototype SystemC-based environment that exploits a Design Space Exploration (DSE) approach able to suggest an HW/SW partitioning of the system specification and a mapping onto an automatically defined architecture. The descriptions of the reference HW/SW co-design methodology and the main design issues related to the developed DSE SW tools, supported by two reference use cases that allows to understand the role of the DSE step in the whole design flow, represent the core of the paper

    The AFarCloud ECSEL Project

    Get PDF
    Farming is facing many economic challenges in terms of productivity and cost-effectiveness. Labor shortage partly due to depopulation of rural areas, especially in Europe, is another challenge. Domain specific problems such as accurate identification and proper quantification of pathogens affecting plant and animal health are key factors for minimizing economical risks, and not risking human health. The ECSEL AFarCloud (Aggregate FARming in the CLOUD) project will provide a distributed platform for autonomous farming that will allow the integration and cooperation of agriculture Cyber Physical Systems in real-time in order to increase efficiency, productivity, animal health, food quality and reduce farm labour costs. This platform will be integrated with farm management software and will support monitoring and decision-making solutions based on big data and real-time data mining techniques.The AFarCloud project is funded from the ECSEL Joint Undertaking under grant agreement n° 783221, and from National funding

    Aggregate Farming in the Cloud: The AFarCloud ECSEL project

    Get PDF
    Farming is facing many economic challenges in terms of productivity and cost-effectiveness. Labor shortage partly due to depopulation of rural areas, especially in Europe, is another challenge. Domain specific problems such as accurate monitoring of soil and crop properties and animal health are key factors for minimizing economical risks, and not risking human health. The ECSEL AFarCloud (Aggregate Farming in the Cloud) project will provide a distributed platform for autonomous farming that will allow the integration and cooperation of agriculture Cyber Physical Systems in real-time in order to increase efficiency, productivity, animal health, food quality and reduce farm labor costs. Moreover, such a platform can be integrated with farm management software to support monitoring and decision-making solutions based on big data and real-time data mining techniques.publishedVersio

    A Model-Based Approach for Adaptable Middleware Evolution in WSN Platforms

    Get PDF
    Advances in technology call for a parallel evolution in the software. New techniques are needed to support this dynamism, to track and guide its evolution process. This applies especially in the field of embedded systems, and certainly in Wireless Sensor Networks (WSNs), where hardware platforms and software environments change very quickly. Commonly, operating systems play a key role in the development process of any application. The most used operating system in WSNs is TinyOS, currently at its TinyOS 2.1.2 version. The evolution from TinyOS 1.x and TinyOS 2.x made the applications developed on TinyOS 1.x obsolete. In other words, these applications are not compatible out-of-the-box with TinyOS 2.x and require a porting action. In this paper, we discuss on the porting of embedded system (i.e., Wireless Sensor Networks) applications in response to operating systems’ evolution. In particular, using a model-based approach, we report the porting we did of Agilla, a Mobile-Agent Middleware (MAMW) for WSNs, on TinyOS 2.x, which we refer to as Agilla 2. We also provide a comparative analysis about the characteristics of Agilla 2 versus Agilla. The proposed Agilla 2 is compatible with TinyOS 2.x, has full capabilities and provides new features, as shown by the maintainability and performance measurement presented in this paper. An additional valuable result is the architectural modeling of Agilla and Agilla 2, missing before, which extends its documentation and improves its maintainability

    Role of neuropeptides, neurotrophins, and neurohormones in skin wound healing.

    No full text
    International audience: Due to the close interactions between the skin and peripheral nervous system, there is increasing evidence that the cutaneous innervation is an important modulator of the normal wound healing process. The communication between sensory neurons and skin cells involves a variety of molecules (neuropeptides, neurohormones, and neurotrophins) and their specific receptors expressed by both neuronal and nonneuronal skin cells. It is well established that neurotransmitters and nerve growth factors released in skin have immunoregulatory roles and can exert mitogenic actions; they could also influence the functions of the different skin cell types during the wound healing process

    Role of neuropeptides, neurotrophins, and neurohormones in skin wound healing

    No full text

    ILC Reference Design Report Volume 1 - Executive Summary

    No full text
    The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2s^-1. This report is the Executive Summary (Volume I) of the four volume Reference Design Report. It gives an overview of the physics at the ILC, the accelerator design and value estimate, the detector concepts, and the next steps towards project realization.The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2s^-1. This report is the Executive Summary (Volume I) of the four volume Reference Design Report. It gives an overview of the physics at the ILC, the accelerator design and value estimate, the detector concepts, and the next steps towards project realization
    corecore