

SystemC-based Electronic System-Level Design Space Exploration Environment for Dedicated Heterogeneous Multi-Processor

Systems

Journal Pre-proof

SystemC-based Electronic System-Level Design Space Exploration
Environment for Dedicated Heterogeneous Multi-Processor Systems

Luigi Pomante, Vittoriano Muttillo, Marco Santic, Paolo Serri

PII: S0141-9331(19)30100-0
DOI: https://doi.org/10.1016/j.micpro.2019.102898
Reference: MICPRO 102898

To appear in: Microprocessors and Microsystems

Received date: 14 February 2019
Revised date: 7 August 2019
Accepted date: 24 September 2019

Please cite this article as: Luigi Pomante, Vittoriano Muttillo, Marco Santic, Paolo Serri,
SystemC-based Electronic System-Level Design Space Exploration Environment for Dedi-
cated Heterogeneous Multi-Processor Systems, Microprocessors and Microsystems (2019), doi:
https://doi.org/10.1016/j.micpro.2019.102898

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier B.V.

https://doi.org/10.1016/j.micpro.2019.102898
https://doi.org/10.1016/j.micpro.2019.102898

SystemC -based Electronic System-Level Design Space
Exploration Environment for Dedicated Heterogeneous

Multi-Processor Systems

Luigi Pomantea,∗, Vittoriano Muttilloa, Marco Santica, Paolo Serria

aUniversità degli Studi dell’Aquila, Center of Excellence DEWS, Italy

Abstract

This work faces the problem of the Electronic System-Level (ESL) HW/SW

co-design of dedicated electronic digital systems based on heterogeneous multi-

processor architectures. In particular, the work presents a prototype SystemC -

based environment that exploits a Design Space Exploration (DSE) approach

able to suggest an HW/SW partitioning of the system specification and a map-

ping onto an automatically defined architecture. The descriptions of the refer-

ence HW/SW co-design methodology and the main design issues related to the

developed DSE SW tools, supported by two reference use cases that allows to

understand the role of the DSE step in the whole design flow, represent the core

of the paper.

Keywords: Electronic System-Level, HW/SW Co-Design, Design Space

Exploration, Heterogeneous Multi-Processor Architectures, Dedicated

Systems, SystemC.

1. Introduction

Dedicated Systems (DSs), as intended in the scope of this work, are digital

electronic systems with an application-specific HW/SW architecture. They are

∗Corresponding author
Email addresses: luigi.pomante@univaq.it (Luigi Pomante),

vittoriano.muttillo@univaq.it (Vittoriano Muttillo), marco.santic@univaq.it (Marco
Santic), paolo.serri@graduate.univaq.it (Paolo Serri)

Preprint submitted to Embedded Hardware Design (Microprocessors and Microsystems)September 27, 2019

specifically designed to satisfy a priori known application requirements (both

functional and non-functional). DSs can be embedded in more complex systems5

and/or they can be subjected to hard/soft real-time constraints.

DSs based on heterogeneous multi-processor architectures (Dedicated Hetero-

geneous Multi-Processor Systems, D-HMPSs) have been recently exploited for a

wide range of application domains, especially in the System-on-Chip (SoC) form

factor (e.g., [1, 2, 3, 4]). Such systems can include several heterogeneous proces-10

sors (i.e., by following the classification provided in [5]: General-Purpose Proces-

sors, GPPs; Application Specific Processors, ASPs; Single Purpose Processors,

SPPs), memories, and a set of interconnection links among them. Moreover,

processors can be adopted in the form of soft, hard or fuse (i.e., hard-wired)

Intellectual Property (IP) cores or as discrete Integrated Circuits (ICs) mainly15

depending on the final system form factor (i.e., on-chip, on-FPGA, on-board)

and scope (final product or platform).

D-HMPSs are so complex that the adopted HW/SW Co-Design Methodol-

ogy plays a major role in determining the success of a product. Moreover, in

order to cope with such a complexity, the selected methodology should allow the20

designer to start working at the so-called Electronic System-Level (ESL) of ab-

straction. This normally means to be able to start the design activities from an

executable model of the system behavior based on a given Model of Computation

(MoC) that is unifying for HW and SW and that can be described by means of

a proper modeling language. For this, in the past years, a remarkable number25

of research works have focused on the Electronic System-Level (ESL) HW/SW

Co-Design of D-HMPS (e.g., [6, 7, 8, 9, 10, 11, 12, 13]). In such works, the most

critical issues are always related to the System Specification and Design Space

Exploration (DSE) activities. In the first one, the designer models the behavior

of the desired system (specifying also possible non-functional constraints), the30

available basic HW components, and the target HW architecture. The second

activity is then related to the approach, automated or not, used to find the

best HW/SW partitioning and mapping for the final system implementation.

The main differences among the various approaches are related to the different

2

amount of information and actions that are explicitly requested to the designer35

and that are so heavily influenced by his experience. In particular, a lot of ap-

proaches (especially those based on the on the Y-Chart principle [14]) explicitly

require as an input the HW architecture to be considered for mapping purposes.

So, at the best of our knowledge, there are few system-level HW/SW co-design

flows, other than the one proposed in this work, that try to fully addresses the40

problem of both “automatically suggest an HW/SW partitioning of the system

specification” and “map the partitioned entities onto an automatically defined

heterogeneous multi-processor architecture”.

Two of the works most similar to the proposed one are [11] and [13]. The

first one presents a SystemC -based Co-Design Flow that try to automate the45

process of prototypes generation. The approach exploits a commercial synthesis

tool to generate automatically hardware accelerators starting from a SystemC

behavioral model. However, the designer has to manually describe an Architec-

ture Template that represents the architectural infrastructure to be used during

the DSE. The second one is still more interesting. In fact, it presents a very50

flexible and extensible system-level MP-SoC design space exploration infras-

tructure that is also able to automatically generate hardware architectures. In

contrast, the approach presented in this work is based on a more integrated and

customized environment able to exploit from the very beginning ESL metrics

and estimations to perform a DSE step. Moreover, the proposed approach is55

also able to explicitly consider also SPP; a processing class that is not clearly

managed in [13]. Finally, to take a look also to a representative SystemC -based

commercial product, it is worth citing Intel CoFluent [15] as a promising ESL

modeling and simulation environment. Other than the model of the system

behavior, it explicitly requires a manual modeling of both the hardware ar-60

chitecture and the mapping but, thanks to its Eclipse-based architecture, it is

possible to think about some future plug-in extensions oriented to support the

designer also in such activities.

According with this scenario, this work focuses on a SystemC-based ESL DSE

Environment for D-HMPS and extends the one presented in [16] by presenting:65

3

• more detailed design aspects about the proposed SystemC library exten-

sion and its improvement to support the Alternation concept (Section 3);

• main SW design issues related to the developed DSE SW tools (Section

4);

• the full integration and exploitation of the main tools (namely, PAM1,70

PAM2, and HEPSIM) in the context of the whole SystemC-based co-

design flow applied to two reference use cases (Section 5).

The paper is organized as follows. Section 2 and Section 3 present the

reference HW/SW co-design flow and the developed prototype SystemC-based

HW/SW co-design environment. Then, Section 4 focuses on the DSE approach75

and related SW design issues, while Section 5 presents two reference use cases

to show the main features of the proposed approach. Finally, Section 6 draws

out some conclusions and outlines the future work.

Figure 1: The reference co-design flow.

4

2. Reference ESL HW/SW Co-Design Flow

The reference ESL HW/SW co-design flow is shown in Figure 1: it reports80

the main steps and the needed information. The entry point is a model of

the system behavior (SBM) based on the Communicating Sequential Processes

(CSP) MoC [17, 18]. SBM represents the functional requirements while the non-

functional ones are currently related only to a Time-To-Completion constraint

(TTC) and the following architectural ones:85

• a fixed set of available processors, interconnection links, and memories

contained in a proper Technologies Library (TL);

• min and max number of available processors and interconnection links

instances;

• available area for chip/board or an equivalent metric for FPGA;90

• a reference template HW architecture and a set of rules that the tool has

to follow while automatically building the final HW architecture;

• available scheduling policies and possible priorities among processes.

It is worth noting that the final result is considered successful only if all the

requirements listed above are satisfied.95

The following paragraphs briefly describe each step of the reference co-design

flow from a general point of view while the next section shows the main cus-

tomizations that have been performed to adapt such step to SystemC technology

and tools.

2.1. System Behavior Model100

In the proposed approach, SBM is captured by means of a procedure-level

internal model called Procedural INteraction Graph (PING [6], an example is

shown in Figure 2) while each procedure is then described, at statement-level,

by using a proper modeling language suitable to represent CSP features. As

already stated in the title, the language adopted in this work is SystemC.105

5

Figure 2: Procedural INteraction Graph (PING) example.

2.2. Functional Simulation

The first step of the proposed HW/SW co-design flow is the Functional

Simulation where SBM is simulated to check its correctness with respect to

some Reference Inputs. Such data sets are of critical importance since they

have to be as much as possible representative of the actual operating conditions110

of the system. Such a simulation is normally very fast, and it allows also to take

into account timed inputs: there is a concept of simulated time, but it doesn’t

consider the time needed to execute the statements, related to both computation

and communication operations, i.e., statements are executed in 0 simulated

time. If SBM is not correct (i.e., wrong outputs or critical conditions such as115

e.g., deadlocks) it should be properly modified and simulated again. The early

detection of anomalous behaviors allows the designer to correct the specification

avoiding a late discovery of problems that could lead to time-consuming design

loops.

2.3. Co-Analysis and Co-Estimation120

This step aims at extracting as much information as possible about the

system by analyzing the SBM while considering the provided TL. This step

is composed of Co-Analysis [6, 19] and Co-Estimation activities [19, 20, 21,

22]. Co-Analysis provides a set of metrics expressing the Affinity of each CSP

process towards the given set of processing classes, and some information about125

6

Concurrency. In particular, the latter identify the set of processes and channels

that can be potentially executed concurrently. Co-Estimation provides a set of

estimations about Timing, Size, Load and Bandwidth. Timing is related to the

estimation of the number of clock cycles needed, by each processor in TL, to

execute each single statement composing the processes in SBM. Size represents130

the number of ROM/RAM bytes needed for SW implementations and equivalent

gates (or alternative metrics for FPGA) for HW ones. Finally, by exploiting

Timing data and considering the TTC constraint, it is also possible to estimate

the Load associated with the execution of SBM processes when mapped on

a single instance of each processor in TL, and the Bandwidth needed to the135

different processes to communicate while fulfilling the TTC constraint.

2.4. Design Space Exploration

Finally, the reference co-design flow reaches the Design Space Exploration

(DSE) step [6, 23, 19] that is constituted of two iterative activities: “HW/SW

Partitioning, Mapping and Architecture Definition” and “Timing Co-Simulation”.140

All the metrics and estimations obtained in the previous steps are then used to

drive the DSE, together with additional information/constraints provided by

the designer: available Scheduling Directives (i.e., available scheduling policies

and possible priorities among processes) and possible Architectural Constraints

(i.e., max number of instances for each available processor and interconnection145

link). The HW/SW Partitioning, Mapping and Architecture Definition activity

is decomposed in two phases and it is based on a genetic algorithm that allows

to explore the design space looking for feasible mapping/architecture items suit-

able to satisfy imposed constraints. Then, the Timing Co-Simulation activity

considers suggested mapping/architecture items to actually check for TTC con-150

straint satisfaction. If the suggested mapping/architecture item doesn’t meet

such a constraint, the designer should perform again the design space exploration

by changing some exploration parameters, by modifying the starting SBM, by

enriching the TL with new elements, or by relaxing some constraints.

7

2.5. Algorithm-Level Flow155

When the mapping/architecture item proposed by the DSE step is satisfac-

tory, it is possible to implement the system. For this, the SW-mapped processes

are typically transformed in C code, with the support of a possible embedded

and/or real-time OS, while the HW-mapped ones are transformed in synthesiz-

able HDL code or implemented by means of existing COTS component depend-160

ing on the final system form factor (i.e., on-chip, on-FPGA, on-board) and scope

(final product or platform). It is worth noting that such transformations will be

done automatically or manually depending on the language and the coding style

adopted to describe the SBM. This step is fully based on existing commercial

algorithm-level methodologies and tools that are out of the scope of this work.165

2.6. Reference D-HMPS Template HW Architecture

The reference D-HMPS template HW architecture of the proposed method-

ology is a heterogeneous multiprocessor one with distributed local memory. It is

based on some basic HW elements, called Basic Block (BB), that represent the

minimal computation, storage and communication units in the system. They170

can be different in their internal components giving so rise to possible hetero-

geneous multiprocessor systems. In particular, as shown in Figure 3, each BB

is composed of three main elements: a Processing Unit (PU), a Local Memory

(LM) and a External Communication Unit (ECU). Finally, these elements are

interconnected by an Internal Interconnections Link (IIL, typically a shared bus175

where the PU is the master and the ECU is a memory-mapped SPP slave).

All the elements in a BB are characterized by means of the data available in

the TL. Currently, PU can belong to one of three different processor classes (i.e.,

GPP, ASP and SPP) where GPP and ASP are characterized by the cost (e)

and the maximum load (Lmax, typically less than 100% to take into account180

possible OS overhead), while SPP is characterized by the cost (e) and the

max number of equivalent gates Geqmax (in the case of reconfigurable logic the

last metric can be changed with the max number of available cells or LUTs).

LM is the memory directly addressable by the PU (i.e., no CSP channels are

8

Figure 3: The Basic Block and its parameters.

needed) and it is characterized by a cost (e),max size for data (KBDMAX)185

and max size for code (KBCmax). Finally, ECU is characterized by the set of

External Interconnection Links (EIL) that it can manage. Moreover, each EIL

is characterized by the following parameters:

• the max available bandwidth (BWmax);

• the min/max number of BBs that shall/can use a single EIL instance190

(Nmin and Nmax);

• the max number of allowed concurrent communications (CCmax);

• the cost (e).

So, considering some instances of BBs and interconnecting them by means of

some instances of EILs (i.e., a pair of ECUs shall be able to manage at least a195

common EIL to allow communication among the related BBs) it is possible to

define a feasible dedicated heterogeneous multiprocessor architecture on which

the system functionality can automatically be mapped to. In the proposed

approach, such an architecture is then represented, for design space exploration

purposes, by means of an internal model based on the so-called Architecture200

Graph [24].

9

3. SystemC-based ESL HW/SW Co-Design Flow

The reference ESL HW/SW co-design flow is shown in Figure 1: it reports

the main steps and the needed information as described in the previous section.

The following paragraphs briefly describe each step together with the main205

customizations that have been performed to adapt them to SystemC technology

and tools.

3.1. SystemC-based System Behavior Model

Since SBM is based on CSP, the SystemC library has been extended to

properly model such kind of processes and, in particular, CSP channels. In210

fact, while processes are modeled by exploiting standard SC THREAD, CSP

channels have been modeled by introducing a proper SC CSP CHANNEL class

in the SystemC library. In particular, a process is an SC THREAD presenting

an infinite loop behavior. It is able to directly access only to its local variables

and so it communicates with other processes only by means of CSP channels.215

Moreover, in the considered SC THREAD, only basic C/C++ statements and

SystemC data types are allowed while avoiding a full OOP approach since it

can introduce critical issues for estimation and HW synthesis activities (in fact,

the adopted restrictions have been inspired by [25]).

Figure 4: Point-to-point link between writer and reader processes.

The SC CSP CHANNEL class has been obtained by modifying the SC FIFO220

one while providing an interface that offers blocking write() and read() meth-

ods. Main modifications with respect to the SC FIFO class are related to the

introduction of a full-handshake protocol to allow synchronous data exchange,

as expected for a CSP channel. The goal is to create a point-to-point link be-

tween two processes; the transfer of data on the channel requires a rendez-vous225

10

of the two processes: it happens only when the writing process is ready to write

at the same time the reading process is ready to read (Figure 4). For such a

reason, it is a blocking channel for a process, if the counterpart process is not

ready for the data transfer.

As said before, in order to let the data transfer and to synchronize the230

two processes, SC CSP CHANNEL interface exposes the methods write() and

read(), while its implementation makes use of some private attributes (two bool

flags, called presence flags, and wait() and notify() mechanisms). The situation

when the writer process comes first is illustrated in Figure 5. In particular, first

of all, the write() method sets the presence flag rd-to-write to true and then235

it checks for the presence of the reader process (by means of the presence flag

rd-to-read). Since, for hypothesis, the reader is not present, the write() method

suspends itself by calling a wait() for a rd-to-read-event. It will be the standard

SystemC scheduler to resume the write() method when such an event will be

notified by another process (i.e., in this case the reader one). In fact, when the240

reader tries to access to the channel by means of the read() method, it sets the

presence flag rd-to-read to true and then discovers that the writer process is

already present (by means of the of the presence flag rd-to-write), so it notifies

a rd-to-read-event and waits for a rd-to-write-event. This suspends the read()

method. When the standard SystemC scheduler will manage the notification of245

the rd-to-read-event event, this will lead to the resume of the write() method

related to the writer process. Then, the data to be transferred is copied in a

temporary data member (i.e., cps-buf), the presence flag rd-to-write is set to

false, a rd-to-write-event is notified to resume the read() method of the reader

process, and another wait() for a rd-to-read-event is called to complete the full250

handshake. Finally, when the standard SystemC scheduler will manage the

notification of the rd-to-write-event event, this will lead to the resume of the

read() method related to the reader process. Then, the data to be transferred is

copied from cps-buf, the presence flag rd-to-read is set to false, a rd-to-read-event

is notified to resume the write() method of the reader process, and the read()255

method is completed. When the standard SystemC scheduler will manage the

11

notification of the rd-to-read-event event, the write() method will be completed

too.

Figure 5: Full Handshake method (writer process comes first).

The other situation, the case of the reader process coming first, is illustrated

in Figure 6. Note how the two diagrams have some common phases:260

• ”waiting for the counterpart to come”, in which is the first process access-

ing the channel, after it has freely set its presence;

• ”waiting for the counterpart to put/get data”, in which is the second

process accessing the channel, after it has set its presence and notified the

counterpart of it;265

• ”waiting for the counterpart to leave”, in which is again the first process

that has accessed the channel.

12

Figure 6: Full Handshake method (reader process comes first).

13

It is worth noting that the last phase is needed to prevent a ”too-early-next-

read/write”, that would find a not updated presence flag (i.e., a presence flag

relative to a previous transfer).270

Finally, additional non-blocking write test() and read test() methods have

been added to the SC CSP CHANNEL class in order to provide a mechanism

to build an Alternation-like statement (e.g., as the ALT statement available in

the OCCAM language [26], also based on CSP): in this way a SC THREAD is

also able to check for data from more than a channel at the same time. In fact,275

an ALT combines a number of processes guarded by inputs. The ALT performs

the process associated with a guard which is ready.

1 ALT

2 left ? packet

3 stream ! packet

4 right ? packet

5 stream ! packet

Listing 1: OCCAM example

Considering the OCCAM example shown in Listing 1 [27], its effect is to

merge the input from the two channels named left and right, on to the channel

stream. The ALT (Figure 7) receives an input from either channel left or chan-280

nel right. A ready input is selected, and the associated process is performed.

Consider this example in detail. If the channel left is ready, and the channel

right is not ready, then the input left?packet is selected. If the channel right is

ready, and the channel left is not ready, then the input right?packet is selected.

If neither channel is ready then the alternation waits until an input becomes285

ready. If both inputs are ready, only one of the inputs and its associated process

are performed. The main issue for the implementation of an ALT construct is

the blocking (reading/writing) nature of the SC CSP CHANNEL. To avoid to

be blocked on wait() functions, a set of non-blocking test methods has been

added to the class (i.e., read test() and write test()).290

With the above mentioned methods, a process can verify if on the other side

14

Figure 7: ALT Construct.

of the channel the counterpart is ready for the data transfer; of course only

a verification is not sufficient, because the process that is evaluating a set of

channels has to stop if none of the transfers are ready. For such a reason a new

wait()/notify() event has been added to the SC CSP CHANNEL class: sc event295

ready alt event that can be enabled on the channel by using the method void

register alt() and can be accessed through const sc event & get sc event().

If a process has an ALT on two channels for a read (as in the previous

example), the notify will be triggered by one of the processes that writes on

such channels; viceversa, if a process has an ALT on two channels for a write,300

the notify will be triggered by one of the processes that reads from such channels.

Following the scheme illustrated in Figure 5 and Figure 6 about the SC CSP

CHANNEL rendez-vouz, the notification will happen in the phase ”waiting for

the counterpart to come”, since the process with ALT will not make (any)

blocking read or write, but only tests, and therefore it will not be waiting305

blocked on the (single) channel, as shown in Figure 8.

Figure 8: ALT Construct Implementation.

15

The process with ALT, as said before, will make first tests, calling read test()

for the channels in ALT and, only if none is ready for the transfer, will wait

for the ready alt event. If, instead, one of the channels in ALT is ready, it will

be read with read() method. Referring to the example of Figure 7, the code in310

Listing 2 represents a possible implementation.

1 left->register_alt();

2 right->register_alt();

3 while(1){

4 if (left->read_test() | right->read_test()){

5 if (left->read_test()){

6 packet = left->read();

7 stream->write(packet);

8 }else if (right->read_test()){

9 packet = right->read();

10 stream->write(packet);

11 }else{

12 // statement not reachable

13 }

14 }else{

15 sc_core::wait(left->get_alt_event() | right->get_alt_event());

16 }

17 }

Listing 2: ALT example

It is worth noting how it is possible, in the implementation, to give a priority

to the channels in the case in which more than one is ready at the same time;

this can be assigned with the order of simple ”if conditions”, without the use of

”if - else if” construct. Also note that with this kind of implementation, when315

a process with ALT is active, it will find one ready channel or wait on alt event

and so there is no possibility to lose a notification. Naturally, it is possible to

put in the ALT construct more than two channels and mix input (from which

to read()) and output (on which to write()) channels.

All these elements allow an effective ESL modeling of D-HMPS behavior.320

16

In particular, the whole system behavior is enclosed into a single SC MODULE

containing all the processes and channels. Other SC MODULE and SC CSP

CHANNEL objects are then used to model the Test-Bench and connected to

the system by means of proper SC PORT. A schematic example is shown in

Figure 9.325

Figure 9: An example of System and Test-Bench modeling.

3.2. SystemC-based Functional Simulation

Since the SystemC model representing SBM is executable by construction,

this step is straightforward, and it is directly based on the simulation kernel

provided by the standard SystemC library [28] (commercial simulators can be

used as well).330

3.3. SystemC-based Co-Analysis and Co-Estimation

This step, as described above, is partially based on techniques and tools that

are SystemC independent. The only SystemC -based tool is the simulator that

is described in the next section.

17

3.4. SystemC-based Design Space Exploration335

Since such a step is the main focus of this paper, it is described with more

detail in the next section.

4. SystemC -based Electronic System-Level Design Space Exploration

As described before (see, in Figure 1, the ”Design Space Exploration” box),

this step is composed of two iterative activities: “HW/SW Partitioning, Map-340

ping and Architecture Definition” (that is further decomposed in two phases,

as shown in Figure 10 and described in the next paragraphs) and “Timing Co-

Simulation”. The final goal is the automatic identification of:

• a HW/SW partitioning of the processes;

• a heterogeneous multi-processor architecture composed of several con-345

nected BB able to satisfy the architectural constraints;

• a mapping of the partitioned processes onto the identified BB able to

satisfy the TTC constraint.

It is worth noting that the reference D-HMPS template HW architecture con-

sidered for the described co-design environment is limited to be heterogeneous350

mono-core multi-processor ones (i.e., one PU for BB), where each PU has its own

local memory and the system has a distributed memory architecture. Moreover,

the ASP class is currently restricted only to Digital Signal Processors (DSP).

Then, the goal of this section is to describe the main design aspects related

to the SW tools that support the two-phases ”HW/SW Partitioning, Mapping355

and Architecture Definition” activity, and the ”Timing Simulation” one.

4.1. HW/SW Partitioning, Mapping and Architecture Definition (1st Phase)

The first phase (top of Figure 10) is related to the mapping of SBM (i.e., a

CSP specification written in SystemC and represented by means of a PING) onto

a dedicated architecture by following the approach described in [6]. The internal-360

model representing the specification, annotated by means of the Co-Analysis

18

Figure 10: The two-phases ”HW/SW Partitioning, Mapping and Architecture Definition”

approach.

19

and Co-Estimation step, is provided as input to the PAM1 (i.e., HW/SW

Partitioning, Architecture Definition and Mapping - Phase 1) tool. So, start-

ing from an annotated PING the first phase goal is to determine number and

type of BB/PUs and a mapping of PING procedures onto them while minimiz-365

ing a cost function by using a genetic approach [29] where each individual of the

population represents a possible mapping/architecture item (each procedure is

associated with a type of processor and an instance number as shown in Fig-

ure 11). The considered cost function is composed of several terms related to

system-level metrics that are evaluated for each individual during the genetic370

evolution [6].

(a) (b)

Figure 11: Two individuals and their corresponding architecture.

In fact, the initial population is randomly generated, while during the evolu-

tion of the population the algorithm performs the optimizations that minimize

the cost function following the classical rules of genetic algorithms (i.e., crossover

and mutation). During the evolution, the individuals that score the worst val-375

ues tend to be replaced by better ones. Several parameters in the algorithm

(e.g., population size, number of generations, mutation probability, etc.) allow

a wide exploration of the design space, with the goal to avoid local minima.

The output of the first phase is so related to the computation aspects of the

architecture: number and type of BB/PUs in the architecture and the mapping380

20

of each PING procedure onto them.

To support the 1st Phase in the context of the proposed SystemC -based co-

design environment, the tool developed in [6] (called EmuP) has been completely

re-designed while keeping in mind two main goals:

• easy integration in the whole co-design flow;385

• highly re-use opportunity for the development of PAM2 tool (2nd Phase).

The main design issues are briefly described below.

4.1.1. Inputs Modeling

Main inputs to the PAM1 tool (i.e., annotated PING and configuration pa-

rameters for the genetic algorithm) are provided by means of two XML files.390

The UML model related to the annotated PING XML schema is shown in Fig-

ure 12. It describes all the information associated to a generic PING procedure

(e.g., Affinity, Load, etc.) allowing to build its runtime representation to be

used during the DSE by following a model-driven approach.

4.1.2. Technologies Library Modeling395

Other than the annotated PING, there is the need to model also available

processors and interconnection links (i.e., the TL). It is worth noting that the

adopted approach, shown in Figure 13, takes also into account requirements

for PAM2 tool (2nd Phase) by exploiting the ModelEntity abstract classes and

polymorphism. Then, each subclass is able to contain all the data available in400

the TL. Such data will be stored in an XML file while a runtime representation

will be built and exploited during the DSE.

4.1.3. PAM Specification Modeling

The set of inputs and the TL previously described represent the system

specification for the DSE and become the starting point to build the initial ran-405

dom population for the genetic algorithm. With the adopted design approach,

the genetic algorithm engine is able to evolve the population by means of a

Specification class, independently from the specific DSE phase (1st or 2nd).

21

Figure 12: UML model related to the annotated PING XML schema.

Figure 13: Technologies Library modeling.

22

4.1.4. Optimization engine, individuals and allocation modeling

Since the genetic approach is the main common element in both PAM1 and410

PAM2 tools, also if they rely on different individuals to perform different cost

functions optimization, the design has been oriented to allow a meaningful re-

use. The main issue is that in both cases there is the need to find a (sub)optimal

allocation between two sets of objects: procedures to processors in the first case,

and channels and links in the second one. So, the individuals and the allocation415

have been modeled to exploit this common point. In fact, the optimization

engine works with a set of generic individuals and so it can be simply reused by

specializing the cost function evaluator as shown in Figure 14 for PAM1. This

approach makes easy to change the algorithm for the optimization as well as

to implement various cost function evaluators to explore the design space in a420

different way.

Figure 14: Optimization engine modeling.

23

4.2. HW/SW Partitioning, Mapping and Architecture Definition (2nd Phase)

The starting point of the second phase (bottom of Figure 10) is the so-

called BBs Interaction Graph (BING), i.e., an internal model used to represent

the partial system obtained at the end of the first phase [23]. Such a model425

is provided as input to the PAM2 (i.e., HW/SW Partitioning, Architecture

Definition and Mapping - Phase 2) tool. Starting from a BING the goal is to

determine number and type of EILs among BBs to minimize a cost function by

using a genetic approach where each individual of the population represents a

possible interconnections/topology item. Such a cost function is composed of430

several terms related to the system-level metrics [23] that are evaluated for each

individual during the genetic evolution.

In order to perform the exploration of the design space, the initial popula-

tion is randomly generated, while during the evolution of the population the

algorithm follows the classical rules of genetic algorithms. However, such an435

approach could give rise to unfeasible physical solutions, so the feasibility of the

children is automatically evaluated and properly taken into account: unfeasible

ones get a higher cost function to be probably removed from the population.

In order to check such a feasibility, ECU shall be characterized with respect to

the BBs belonging to the BING. This is obtained by means of an ECU Charac-440

terization Matrix (ECUCM) that explicitly indicates the EILs that each BB is

able to manage.

Furthermore, to support the 2nd Phase in the context of the proposed Sys-

temC -based co-design environment, the tool developed in [23] (called ETOP3)

has been completely re-designed by fully exploiting the design approach and445

several of the classes described in the previous paragraph.

4.3. Timing Co-Simulation

Timing Co-Simulation is performed by means of a HW/SW Timing Co-

Simulator fully described in [19]. Briefly, it has been specifically built on the

base of standard SystemC library by introducing some additional classes (i.e.,450

SystemManager, SimulationManager, and SchedulingManager, as represented

24

in Figure 15). Thanks to them, the current co-simulator is able to take into

account a heterogeneous multi-processor architecture, a processes-to-BB/PU

and a channel-to-links mappings, and all the relevant information previously

collected, to check if a given TTC constraint is going to be satisfied. Addition-455

ally, the designer can also select the scheduling policy to be used for processes

implemented in SW and allocated on the same BB/PU. With more details, Sys-

temManager allows to take into account all the details about the system to be

simulated (i.e., number and type of BB/PUs, number and type of interconnec-

tion links, Affinity and Timing data needed for simulation, mapping, etc.), while460

SimulationManager allow to configure the simulation type (i.e., functional or

timing) and defines a set of macro used to instrument the simulated SystemC

code. Finally, SchedulingManager allow taking into account the effects of the

possible scheduling activities.

Figure 15: SystemC HW/SW Timing Co-Simulator architecture.

As already said, the designer can select a scheduling policy for processes465

implemented in SW and allocated on the same BB/PU. This scheduler acts as

a user-level one with respect to the standard SystemC simulation kernel.

25

5. Reference Use Cases

In order to show the main features of the proposed SystemC-based ESL DSE

Environment, two use cases are reported below: Extended FIR-FIR-GCD and470

Sobel Filtering.

5.1. Use Case #1: Extended FIR-FIR-GCD

This use case is an extension of the one already presented in [16]), called FIR-

FIR-GCD. It is worth noting that it doesn’t perform a meaningful computation

but it is just used as a simple case study (i.e., it is a toy example). In fact, it475

receives pairs of numbers as input, performs two fir (i.e., finite impulse response)

filtering operations which results are used to evaluate the GCD (Great Common

Divisor). With respect to the one presented in [16], it has been extended in two

ways:

• by exploiting the possibilities to use the ALT mechanism in the modeling480

activity and to consider different scheduling directives in the DSE (Exten-

sion #1).

• by exploiting PAM2 to perform DSE with respect to the communication

architecture (Extension #2).

5.1.1. Extension #1485

Let be the SBM, represented by the CSP shown in Figure 16, composed of

eight processes and twelve channels (Figure 9 provides also a schematic view

of such a system while the related PING is shown in Figure 2). Two more

processes and three more channels are then used to describe and connect the

test-bench. In this case, thanks to the ALT mechanism, it has been possible to490

introduce buffers into fir8, fir16 and gcd processes to avoid loosing data from

the external environment due to the blocking communication mechanism and to

improve average timing performances. In fact, by means of the ALT mechanism

it is possible to check the availability of inputs without incurring into the block,

26

Figure 16: FIR-FIR-GCD CSP.

so allowing the computation to be performed until the buffers contains data to495

be processed, while still being able to fill the buffers when new data arrives.

The Technologies Library considered for this case study is composed of three

different PUs: Intel MPU8051 (16 MHz, GPP), Microchip PIC24 (32 MHz,

DSP) and Xilinx Spartan3AN (50 MHz, SPP). TL contains all the relevant in-

formation about processors, memories and interconnections needed to perform500

the DSE. For the moment, as in [16], let the processors being able to commu-

nicate only by means of a shared bus (i.e., buses are the only interconnection

links actually contained in the TL).

So, the first steps of the flow (i.e., Functional Simulation, Co-Analysis and

Co-Estimation) are the same of [16]. Once collected all the metrics and all the505

estimations needed for the DSE step, the following constraints are imposed:

• Timing Constraints - Given the estimated Worst-Case Time-To-Completion

(i.e., WCTTC=5.4 ms) obtained by means of a timing co-simulation per-

formed allocating all the CSP processes on a single MPU8051 instance, the

DSE step is repeated several times in order to suggest architecture/mapping510

pairs able to provide each time even more challenging TTCs equal respec-

27

tively to:

– 0.75*WCTTC

– 0.5*WCTTC

– 0.35*WCTTC515

– 0.25*WCTTC

– 0.1*WCTTC

• Architectural Constraints - The DSE step can use max 4 instances of

MPU8051, max 2 instances of PIC24 and max 1 instance of Spartan3AN

FPGA;520

• Scheduling Directives - Processes implemented in SW and allocated on

the same processor are subjected to two possible scheduling policies: a

preemptive Round-Robin (RR) scheduling policy with 10% time overhead

for context switches (in this case the results are the ones presented in [16]),

and a non-preemptive First Come First Served (FCFS) scheduling policy525

with 10% time overhead for context switches.

As highlighted before, in this case study, the communication infrastructure has

been fixed (i.e., BB/PUs with distributed memory and shared bus). So, the

timing co-simulator directly takes into account the characterization data, related

to the selected shared bus. In this case, it has been adopted an I2C bus with530

a bandwidth fixed to 400 Kbps since it is a multi-master one and it is available

for all the considered processors.

So, given the previous set of TTC constraints, the DSE step, while trying to

satisfy each one of them, to satisfy all the architectural constraints, and to min-

imize the cost of the solution, provides the results shown in Table 1. Starting535

from WCTTC (single MPU8051), when the requirements is 0.75* WCTTC, the

DSE tool proposes a dual MPU8051 architecture allocating separately processes

0-1-2 and 3-4-5-6-7. The timing co-simulation estimates a TTC equal to 2.94

ms with RR scheduling and 2.352 ms with FCFS one that well satisfy the 4.05

28

Table 1: DSE step results.

TTC
Proposed Simulated Time Simulated Time

architecture/mapping (RR [16]) (Buffering + FCFS)

#1 (0.75*WCTTC) MPU8051(0): 0, 1, 2

2.94 ms 2.352 ms(4.05 ms) MPU8051(1): 3, 4, 5, 6, 7

(Cost = 2)

#2 (0.5*WCTTC) MPU8051(0): 0, 1

2.87 ms
2.009 ms(2.7 ms) MPU8051(1): 3, 4, 5

MPU8051(2): 2, 6, 7

(Cost = 3)

#3 (0.35*WCTTC) MPU8051(0): 3, 4, 5

1.57 ms 1.256 ms(1.89 ms) PIC24(0): 0, 1, 2, 6, 7

(Cost = 6)

#4 (0.25*WCTTC) PIC24(0): 0, 1, 2

1.07 ms 0.856 ms(1.35 ms) PIC24(1): 3, 4, 5, 6, 7

(Cost = 10)

#5 (0.1*WCTTC) SPARTAN3AN(0): 0, 1, 2, 3, 4, 5, 6, 7
0.37 ms 0.37 ms

(1.35 ms) (Cost = 50)

0: fir16, 1: fir16 eval, 2: for16 shift, 3: fir8, 4: fir8 eval, 5: for8 shift, 6: gcd, 7: gcd eval

29

ms TTC constraint. Imposing 0.5* WCTTC, the DSE step proposes a triple540

MPU8051 architecture with the allocations 0-1, 3-4-5 and 2-6-7 (Figure 11-left

shows the corresponding PING with related individual). However, this leads to

an estimated time a bit greater than 2.7 ms with RR scheduling while, with

a FCFCS one, it is 2.009 ms so still able to satisfy the constraint. Imposing

0.35*WCTTC, the DSE step finds a hybrid MPU8051-PIC24 architecture with545

an allocation that satisfies the new constraint with both scheduling policies

(Figure 11-right shows the corresponding PING with related individual). Im-

posing 0.25* WCTTC, a dual PIC24 seems to solve the problem (with both

scheduling policies) while, with 0.1* WCTTC, imposed loads are too high for

SW implementations on available processors and so a full HW architecture on550

FPGA is proposed. It is worth noting that the best results related to FCFS

scheduling (i.e., simulated times are 20%-30% less by using the same HW con-

figurations, due to the reduced scheduler overheads) are more than reasonable

since the proposed case study does not require particular responsiveness and

it is not so useful to force periodic context switches until a process is able to555

perform computations.

All the steps, prior to DSE one, have been executed in near 30 minutes. It

is worth noting that this is a one-time effort, while the described DSE step has

been executed in less than 25 minutes by exploiting a Microsoft Windows7-based

notebook equipped with an Intel i7 processor and 4 GB of RAM.560

5.1.2. Extension #2

This paragraph will exploit the case study described above, to show the

integration of PAM2 in the whole HW/SW co-design flow. For this, the Tech-

nologies Library considered for this case study is extended to consider following

EILs:565

• UART

– BWmax: 115.2 Kbps

– Nmin = 2; Nmax = 2 (i.e., point-to-point)

30

– CCmax = 2 (i.e., bidirectional)

– Relative cost = 1570

• I2C slow (i.e., the only EIL considered in [16])

– BWmax: 400 Kbps

– Nmin = 2; Nmax = 8 (i.e., an upper limit fixed by design to avoid

bottlenecks)

– CCmax = 1575

– Relative cost = 2

• I2C fast

– BWmax: 800 Kbps

– Nmin = 2; Nmax = 12

– CCmax = 1580

– Relative cost = 3

• SPI

– BWmax: 2 Mbps

– Nmin = 2; Nmax = 2

– CCmax = 2585

– Relative cost = 4

Finally, given such EILs and PUs, the ECUCM is shown in Table 2.

Then, as an example of exploitation and integration of PAM2, each solution

of the previous DSE - first phase (Table 1 - third column ”Simulated Time

with RR”) have been be used as a starting point for the DSE - second phase590

by considering all the EILs previously described (and adding the Architectural

Constraint of max 2 instances for each available EILs). Table 3 summarizes the

results.

31

Table 2: ECUCM related to Extension #2.

UART I2C slow I2C fast SPI

MPU 8051 X X

PIC24 X X X X

Spartan3AN X X X

Old solution #1 has been changed by using an UART instead of I2C slow:

the simulated time has increased but it is still under 0.75*WCTTC and the595

whole cost is reduced. Old solution #2 has been replaced by an architecture

that exploits both I2C slow and UART (please, note that they are the only

EILs that can be used by MPU8051). In this way, new solution #2 can satisfy

the timing constraint 0.5*WCTTC. Such an architecture is shown in Figure 17.

It is worth noting that, in this case, the major benefit is provided by allowing600

concurrency in the communications by means of two EILs, associated to the

fact the 3-6 requires a quite low bandwidth (in fact, by using an UART for 0-6

and 0-2, where 0-2 requires a relevant bandwidth, leads to a discarded solution).

Old solution #3 is not changed since using an UART (cheaper) it is not possible

to satisfy 0.35*WCTTC. Old solution #4 has been changed by using an I2C605

fast instead of slow: it is a little bit more expensive, but it provides a relevant

performance improvement. Among other solutions (discarded by PAM2), it

is not suggested to use the UART-based (too slow) and the SPI-based (too

expensive) ones. Finally, old solution #5 is composed by a single BB (i.e., all

the processes are implemented as SPPs on a single Sparta3AN), so PAM2 is not610

needed since there are no EILs to be considered to connect BBs. Summarizing,

PAM2 has allowed to refine the solutions suggested by PAM1 by properly taking

into EILs characterization. The described second-phase DSE has been executed

in less than 20 minutes by exploiting a Microsoft Windows7-based notebook

equipped with an Intel i7 processor and 4 GB of RAM.615

32

Table 3: Second-phase DSE results.

Old New Best Solution Other Solutions

Best Solution suggested by PAM2 discarded by PAM2

#1 (0.75*WTTTC = 4.05 ms) UART instead of I2C slow I2C slow + UART

MPU8051: 0,1,2 (3.25 ms) (dedicated to 0-6 an 0-2)

MPU8051: 3,4,5,6,7 Cost: 2 + 1 (2.92 ms)

(2.94 ms) Cost: 3 + 3

Cost: 2 + 2

#2 (0.5*WTTTC = 2.7 ms) I2C slow + UART I2C slow + UART

MPU8051: 0,1 (dedicated to 3-6) (dedicated to 0-6 an 0-2)

MPU8051: 3,4,5 (2.37 ms) (2.92 ms)

MPU8051: 2,6,7 Cost: 3 + 3 Cost: 3 + 3

(2.87 ms)

Cost: 6 + 2 1

#3 (0.35*WCTTC = 1.89 ms)

The Same

UART instead of I2C slow

MPU8051: 3,4,5 (2.24 ms)

PIC24: 0,1,2,6,7 Cost: 6 + 1

(1.57 ms)

Cost: 6 + 2

#4 (0.25*WCTTC = 1.35 ms) I2C fast instead of slow UART instead of I2C slow [1]

PIC24: 0,1,2 (0.87 ms) SPI instead of I2C slow [2]

PIC24: 3,4,5,6,7 Cost: 10 + 3 ([1] 1.11 ms, [2] 0.83 ms)

(1.07 ms) [1] Cost: 10 + 1, [2] Cost: 10 + 4

Cost: 10 + 2

#5 (0.1*WCTTC = 0.54 ms)

None None

Spartan3AN: 0,1,2,3,4,5,6,7

(0.37 ms)

Cost: 50

0: fir16, 1: fir16 eval, 2: for16 shift, 3: fir8, 4: fir8 eval, 5: for8 shift, 6: gcd, 7: gcd eval

33

Figure 17: PAM2 New solution #2.

5.2. Use Case #2: Sobel Filtering

This use case considers an application that performs the Sobel Filtering [30]

on a given input image. The System Behavior Model (SBM) is composed of 5

applicative processes (with process IDs from 2 to 6, since 0 and 1 are reserved for

Stimulus and Display processes, i.e. the TestBed) and 8 channels (with channel620

IDs from 1 to 8), as shown in Figure 18

Figure 18: Sobel Filtering CSP.

The Stimulus process provides a 64x64 pixel input JPEG image while the

other processes are described in the following list:

• split (#ID 2): take in input a 64x64 image and split it into several 8x8

simple sub-matrices;625

• sobel (#ID 3): realize the sobel filter using two sub-processes gx and gy ;

34

• gx (#ID 4) and gy (#id 5): manage two sub-images which at each

point contain the vertical and horizontal derivative approximations, re-

spectively;

• merge (#ID 6): combine the sub-images to generate the final result.630

Finally, the Display process shows the result.

The considered Technology Library (TL) is the same used in the Use Case #1

(Extension #2). Other than the SBM, the following Non Functional Constraints

are considered:

• Timing Constraints635

– Given the estimated Worst-Case Time-To-Completion (WCTTC)

that is obtained by means of a timing co-simulation performed al-

locating all the CSP processes on a single MPU8051 instance, the

DSE step will be repeated several times in order to suggest architec-

ture/mapping pairs able to provide each time even more challenging640

TTCs equal respectively to:

∗ 0.75*WCTTC

∗ 0.5*WCTTC

∗ 0.35*WCTTC

∗ 0.25*WCTTC645

∗ 0.1*WCTTC

• Architectural Constraints

– The DSE step can use max 4 instances of MPU8051, max 2 instances

of PIC24, max 1 instance of Spartan3AN FPGA, and max 2 instances

for each available EILs.650

• Scheduling Directives

– Processes implemented in SW and allocated on the same BB are sub-

jected to a non-preemptive First Come First Served (FCFS) schedul-

ing policy with 10% time overhead for context switches.

35

The first step of the co-design flow is the Functional Simulation, that allows655

to check by simulation the correctness of the SBM. The process consists in

providing an image as input and check if the obtained output is the expected

one. The reference 64x64 pixel pair (i.e., the Reference Input) for this use case

is shown in Figure 19.

(a) Input Image. (b) Output Image.

Figure 19: Sobel Filtering result.

Then, the Co-Analysis & Co-Estimation step allows to gather several in-660

formation needed for the DSE. In particular: the Affinity has been provided

directly by the designer; Process Concurrency matrix, Channel Concurrency

matrix, Communication matrix and Load Estimation are evaluated by means

of HEPSIM [19]; Timing, Size and Cost are the same of [16] (since the TL is

the same); Bandwidth is evaluated by dividing the Communication matrix for665

the different TTCs.

Once collected all the needed information, the DSE is performed by exploit-

ing PAM1 and PAM2 to obtain suggestions about architecture/mapping pairs

able to satisfy the different TTCs (and all the other requirements). Each pair

is then simulated by HEPSIM to check if the estimated simulated time satisfies670

the related TTC. Table 4 reports the DSE results. From their analysis it is

possible to highlight some interesting situations:

• solution #3 (0.35*TTC) is cheaper than solution #2 so it should be used

also to satisfy the 0.5*TTC requirement. Situations like these can happen

since the provided suggestions are related to sub-optimal solutions;675

36

• it is always possible to satisfy the requested TTCs apart from the last one

(i.e., 0.1*WCTTC), cfr. solution #5. This typically means that with the

imposed constraints (or with the available TL), it is not possible to satisfy

the given TTC constraint. In this case, by relaxing the Architectural

Constraints allowing the use of two instances of SPARTAN3AN FPGA,680

the DSE is able to suggest a (more expensive) solution (i.e., solution #5

bis) able to satisfy the 0.1*WCTTC constraint.

Table 4: DSE step results.

TTC
Proposed Simulated Time Cost (PUs+EILSs)

architecture/mapping (FCFS)

PAM1:

1126,38 ms 12+2=24

- MPU8051 (0): 2, 5

- MPU8051 (1): 6

#1 (0.75*WCTTC) - PIC24 (0): 3

(1314,51 ms) - PIC24 (1): 4

PAM2:

- I2C slow for all the BBs

PAM1:

632,71 ms 61+2=63

- MPU8051 (0): 2

- PIC24 (0): 3, 6

#2 (0.5*WCTTC) - PIC24 (1): 4

(876,34 ms) - SPARTAN3AN: 5

PAM2:

- I2C slow for all the BBs

PAM1:

515,421 ms 56+3=59

- MPU8051 (0): 2, 4

- PIC24 (0): 6

#3 (0.35*WCTTC) - SPARTAN3AN: 3, 5

(613,438 ms)

PAM2:

- I2C fast for all the BBs

PAM1:

388,992 ms 56+7=63

- MPU8051 (0): 2

- PIC24 (0): 3, 6

- SPARTAN3AN: 4, 5

#4 (0.25*WCTTC)

(438,17 ms)

37

TTC
Proposed Simulated Time Cost (PUs+EILs)

architecture/mapping (FCFS)

PAM2:

- I2C fast for all the BBs

- SPI between PIC24(0)

and SPARTAN3AN

PAM1:

322,6586 ms 60+7=67

- PIC24 (0): 2

- PIC24 (0): 3, 6

- SPARTAN3AN: 4, 5

#5 (0.1*WCTTC)

(175,268 ms)

PAM2:

- I2C fast for all the BBs

- SPI between PIC24(0)

and SPARTAN3AN

#5 bis (0.1*WCTTC) PAM1:

21,6586 ms 100+4=104

(175,268 ms) - SPARTAN3AN (0): 2, 3, 6

- SPARTAN3AN (1): 4, 5

With relaxed

Architectural

Constraints:

max 2 instances PAM2:

of Spartan3AN FPGA - SPI between SPARTAN3AN (0)

and SPARTAN3AN (1)

All the steps, prior to DSE one, have been executed in near 90 minutes. It

is worth noting that this is a one-time effort, while the described DSE step has685

been executed in near 60 minutes by exploiting a Microsoft Windows7-based

notebook equipped with an Intel i7 processor and 4 GB of RAM.

6. Conclusions

This work has coped with the problem of the electronic system-level HW/SW

co-design of dedicated digital systems based on heterogeneous multi-processor690

architectures. In particular, the work has considered an automatic system-level

DSE approach in order to present a prototype “SystemC -based ESL DSE Envi-

ronment for Dedicated Heterogeneous Multi-Processor Systems”. The presented

38

tools are still in a prototypal status and several improvements are still possible

but the preliminary experimental results are encouraging and justify further re-695

search efforts in this direction. In particular, with respect to the whole co-design

methodology, it will be of very critical importance a validation based on real-

world data coming from lower levels of abstraction. Then, it will be important

to consider more non-functional requirements (i.e., power/energy, real-time con-

straints, mixed-criticality, etc.) and the run-time adaptivity that can be required700

to the final system, for example in contexts related to Cyber-Physical Systems

where the working environment can frequently change after system deployment.

Finally, it will be interesting also to exploit existing works to introduce in the

presented SystemC -based co-design environment also the possibility of man-

aging architectures based on homogeneous/heterogeneous multi-core processors705

with shared memory among the cores [31].

Acknowledgement

This work has been partially supported by the ECSEL RIA 2016 MegaM@Rt2

and AQUAS projects.

References710

[1] Xilinx Zynq7000, http://www.xilinx.com.

[2] OMAP Platform,, www.omap.com.

[3] SH Mobile Series, http://www.renesas.com.

[4] Intel Stratix 10 SoC FPGA, https://www.intel.com.

[5] F. Vahid, T. Givargis, Embedded system design: A Unified Hard-715

ware/Software Approach, Department of Computer Science and Engineer-

ing University of California, 1999 (1999).

[6] C. Brandolese, W. Fornaciari, L. Pomante, F. Salice, D. Sciuto, Affinity-

driven system design exploration for heterogeneous multiprocessor soc,

39

IEEE Transactions on Computers 55 (5) (2006) 508–519 (May 2006).720

doi:10.1109/TC.2006.66.

[7] T. Streichert, M. Glaß, C. Haubelt, J. Teich, Design space exploration

of reliable networked embedded systems, Journal of Systems Architec-

ture 53 (10) (2007) 751 – 763, embedded Computer Systems: Architec-

tures, Modeling, and Simulation (2007). doi:https://doi.org/10.1016/725

j.sysarc.2007.01.005.

[8] G. Ascia, V. Catania, A. G. D. Nuovo, M. Palesi, D. Patti, Efficient design

space exploration for application specific systems-on-a-chip, Journal of Sys-

tems Architecture 53 (10) (2007) 733 – 750, embedded Computer Systems:

Architectures, Modeling, and Simulation (2007).730

[9] M. Holzer, B. Knerr, M. Rupp, Design space exploration with evolu-

tionary multi-objective optimisation, in: 2007 International Symposium

on Industrial Embedded Systems, 2007, pp. 126–133 (July 2007). doi:

10.1109/SIES.2007.4297326.

[10] G. Palermo, C. Silvano, V. Zaccaria, An efficient design space exploration735

methodology for on-chip multiprocessors subject to application-specific

constraints, in: 2008 Symposium on Application Specific Processors, 2008,

pp. 75–82 (June 2008). doi:10.1109/SASP.2008.4570789.

[11] C. Haubelt, T. Schlichter, J. Keinert, M. Meredith, Systemcodesigner: Au-

tomatic design space exploration and rapid prototyping from behavioral740

models, in: 2008 45th ACM/IEEE Design Automation Conference, 2008,

pp. 580–585 (June 2008). doi:10.1145/1391469.1391616.

[12] I. D. L. Anderson, M. A. S. Khalid, Sc build: a computer-aided design tool

for design space exploration of embedded central processing unit cores for

field-programmable gate arrays, IET Computers Digital Techniques 3 (1)745

(2009) 24–32 (January 2009). doi:10.1049/iet-cdt:20070120.

40

[13] Z. J. Jia, T. Bautista, A. Núñez, A. D. Pimentel, M. Thompson, A

system-level infrastructure for multidimensional mp-soc design space co-

exploration, ACM Trans. Embed. Comput. Syst. 13 (1s) (2013) 27:1–27:26

(Dec. 2013). doi:10.1145/2536747.2536749.750

[14] K. Keutzer, A. R. Newton, J. M. Rabaey, A. Sangiovanni-Vincentelli,

System-level design: orthogonalization of concerns and platform-based de-

sign, IEEE Transactions on Computer-Aided Design of Integrated Cir-

cuits and Systems 19 (12) (2000) 1523–1543 (Dec 2000). doi:10.1109/

43.898830.755

[15] Intel CoFluent Studio - Model and Simulate System Behavior, https://

www.intel.it/content/www/it/it/cofluent/cofluent-studio.html

(2018 (accessed: 21.05.2018)).

[16] L. Pomante, P. Serri, Systemc-based hw/sw co-design of heterogeneous mul-

tiprocessor dedicated systems, International Journal of Information Sys-760

tems 1 (July 2014).

[17] C. A. R. Hoare, Communicating Sequential Processes, Prentice-Hall, Inc.,

Upper Saddle River, NJ, USA, 1985 (1985).

[18] Communicating Sequential Processes, C. A. R. Hoare, May 18, 2015, www.

usingcsp.com.765

[19] D. Ciambrone, V. Muttillo, L. Pomante, G. Valente, Hepsim: An esl hw/sw

co-simulator/analysis tool for heterogeneous parallel embedded systems, in:

2018 7th Mediterranean Conference on Embedded Computing (MECO),

2018, pp. 1–6, best Paper Award (June 2018). doi:10.1109/MECO.2018.

8406078.770

[20] A. Allara, C. Brandolese, W. Fornaciari, F. Salice, D. Sciuto, System-

level performance estimation strategy for sw and hw, in: Proceedings

International Conference on Computer Design. VLSI in Computers and

41

Processors (Cat. No.98CB36273), 1998, pp. 48–53 (Oct 1998). doi:

10.1109/ICCD.1998.727022.775

[21] C. Brandolese, W. Fornaciari, F. Salice, An area estimation methodol-

ogy for fpga based designs at systemc-level, in: Proceedings. 41st De-

sign Automation Conference, 2004., 2004, pp. 129–132 (July 2004). doi:

10.1145/996566.996606.

[22] C. Brandolese, Source-level estimation of energy consumption and execu-780

tion time of embedded software, in: 2008 11th EUROMICRO Conference

on Digital System Design Architectures, Methods and Tools, 2008, pp.

115–123 (Sep. 2008). doi:10.1109/DSD.2008.43.

[23] L. Pomante, System-level design space exploration for dedicated heteroge-

neous multi-processor systems, in: ASAP 2011 - 22nd IEEE International785

Conference on Application-specific Systems, Architectures and Processors,

2011, pp. 79–86 (Sep. 2011). doi:10.1109/ASAP.2011.6043239.

[24] J. Teich, T. Blickle, L. Thiele, An evolutionary approach to system-

level synthesis, in: Proceedings of 5th International Workshop on Hard-

ware/Software Co Design. Codes/CASHE ’97, 1997, pp. 167–171 (March790

1997). doi:10.1109/HSC.1997.584597.

[25] SystemC, http://www.accellera.org (2018 (accessed: 21.05.2018)).

[26] Occam, http://www.wotug.org/occam/.

[27] Barrett, G.: occam 3 Reference Manual. Technical report, Inmos Limited

(1992), http://wotug.ukc.ac.uk/parallel/occam/documentation/.795

[28] SystemC, http://www.accellera.org.

[29] M. Mitchell, An Introduction to Genetic Algorithms, MIT Press, Cam-

bridge, MA, USA, 1998 (1998).

[30] G. N. Chaple, R. D. Daruwala, M. S. Gofane, Comparisions of robert,

prewitt, sobel operator based edge detection methods for real time uses800

42

on fpga, in: 2015 International Conference on Technologies for Sustainable

Development (ICTSD), 2015, pp. 1–4 (Feb 2015). doi:10.1109/ICTSD.

2015.7095920.

[31] L. Pomante, Hw/sw co-design of dedicated heterogeneous parallel sys-

tems: an extended design space exploration approach, IET Computers805

Digital Techniques 7 (6) (2013) 246–254 (November 2013). doi:10.1049/

iet-cdt.2013.0026.

43

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or

personal relationships that could have appeared to influence the work reported

in this paper.

44

Luigi Pomante has received the “Laurea” (i.e., BSc+MSc) Degree in Com-

puter Science Engineering from “Politecnico di Milano” (Italy) in 1998, the 2nd

Level University Master Degree in Information Technology from CEFRIEL (a

Center of Excellence of “Politecnico di Milano”) in 1999, and the Ph.D. Degree

in Computer Science Engineering from “Politecnico di Milano” in 2002. He had

been a Researcher at CEFRIEL from 1999 to 2005 and, in the same period, he

had been also a Temporary Professor at ”Politecnico di Milano”. From 2006,

he is an Academic Researcher at Center of Excellence DEWS (“Universit degli

Studi dellAquila”, Italy). From 2008 he is also Assistant Professor at “Universit

degli Studi dellAquila” (he is responsible of the “Embedded Systems” course).

His activities focus mainly on Electronic Design Automation (in particular Elec-

tronic System-Level HW/SW Co-Design) and Networked Embedded Systems

(in particular Wireless Sensor Networks). In such a context, he has been author

(or co-author) of more than 100 articles published on international and national

conference proceedings, journals, and book chapters. He has been also reviewer

and member of several TPCs related to his research topics. From 2010, he has

been in charge of scientific and/or technical issues on behalf of DEWS in more

than 10 funded European and national research projects.

45

