21 research outputs found

    Genetically engineered cardiac pacemaker: stem cells transfected with HCN2 gene and myocytes - a model

    Full text link
    Artificial biological pacemakers were developed and tested in canine ventricles. Next steps will require obtaining oscillations sensitive to external regulations, and robust with respect to long term drifts of expression levels of pacemaker currents and gap junctions. We introduce mathematical models intended to be used in parallel with the experiments. The models describe human mesenchymal stem cells ({\it hMSC}) transfected with HCN2 genes and connected to myocytes. They are intended to mimic experiments with oscillation induction in a cell pair, in cell culture and in the cardiac tissue. We give examples of oscillations in a cell pair, in a 1 dim cell culture, and oscillation dependence on number of pacemaker channels per cell and number of gap junctions. The models permit to mimic experiments with levels of gene expressions not achieved yet, and to predict if the work to achieve this levels will significantly increase the quality of oscillations. This give arguments for selecting the directions of the experimental work

    The role of the extra cellular matrix on memory

    No full text
    forthcoming article published online at www.m-hikari.comInternational audienceWe expose first a biological model of memory based on one hand of the mechanical oscillations of axons during action potential and on the other hand on the changes in the extra cellular matrix composition when a mechanical strain is applied on it. Due to these changes, the stiffness of the extra cellular matrix along the most excited neurons will increase close to these neurons due to the growth of astrocytes around them and to the elastoplastic behavior of collagen. This will create preferential paths linked to a memory effect. In a second part, we expose a physical model based on random walk of the action potential on the array composed of dendrites and axons. This last model shows that repetition of the same event leads to long time memory of this event and that paradoxical sleep leads to the linking of different events put into memory

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication

    l'utilisation des cellules souches pour créer une pacemaker cardiaque biologique

    No full text
    By investigating stem cell models, we showed that induction of oscillation in normal ventricular myocytes by connecting stem cells to them is not possible. Induction of oscillations by stem cells was never demonstrated yet in well controlled conditions. Reported results [5],[4] demonstrate only increase of oscillation frequency (in cell culture or in whole hearts).Oscillations become possible only for myocytes with much lower than normal threshold for inducing oscillations. Approaches like decreasing of expression level of IK1 current in myocytes are successful.Other possible approach is connecting stem cells not directly to myocytes but to other types of cardiac cells with lower oscillation threshold. This induces oscillation without need to affect IK1 current. This transitional cells might be AV node cells, Purkinje cells or cells in the vicinity of the sinus node.To drive cardiac tissue, small size artificial pacemakers need deliver currents orders of magnitude larger than those used in cell pair or cell culture experiments. To avoid this, the size of the pacemaker created should be several times larger than the electrotonic constant ?For pacemaker currents, most experimenters traditionally measure inactivation only. A description of a stem cell including inactivation only is not precise enough to study oscillations. Descriptions including both, activation and inactivation of pacemaker current should be used, contrary to tradition in this field.En étudiant des modèles de cellules souches, nous avons montré que l'induction des oscillations dans des myocytes ventriculaires normaux inexcitables n'est pas possible en les connectant à des cellules souches. Jusqu'à aujourdhui, cette induction n'a jamais été démontrée même sous de bonnes conditions. Les résultats référencés [5],[4] ne font apparaître qu'une augmentation de la fréquence d'oscillation (soit dans les cellules en culture, soit dans le coeur).Les oscillations ne deviennent possibles que pour les myocytes qui ont un seuil d'excitation des oscillations induites bien plus bas que la normale. Seules les méthodes qui diminuent le niveau d'expression de courant IK1 donnent des résultats. Il existe une autre approche, qui consiste à ne pas connecter directement les cellules souches à des myocytes, mais à d'autres types de cellules cardiaques avec un seuil d'excitation très bas. De cette façon, des oscillations sont induites sans avoir à modifier le courant IK1 . Ces cellules transitoires pourront être des cellules AV node, de Purkinje ou des cellules voisinant SA node.Pour amener un tissus cardiac à oscillation, les pacemakers artificiels de petite taille exigent des courants d'une magnitude bien plus élevée que dans les expériences menées avec des paires de cellules ou des cultures. Pour éviter ce problème, la taille des pacemakers artificiels doit être plus grande que la constante électrotonique ?Pour le courantpacemaker, la plupart des expérimentateurs ont l'habitude de ne mesurer que l'inactivation. Cette seule mesure ne suffit pas pour étudier les oscillations. Les définitions incluant à la fois inactivation et activation du courant pacemaker doivent prévaloir contrairement à la tradition dans le domaine

    Multiple scattering on deterministic fractal aggregates : analysis of the backscatered intensity

    No full text
    5 pagesInternational audienceWe performed a numerical study of multiple scattering on regular fractal aggregates. We used a recursive method to compute the backscattered intensity resulting from a multiple scattered coherent wave. The wavelength of the incident field was supposed to be in the optical domain. The resulting backscattered intensity is analyzed in the light of diffraction on deterministic fractals. Due to multiple scattering, the scaling of the signals is lost, on the contrary of single scattering signals

    Les cellules souches utilisées comme un système génétique afin de fabriquer un régulateur cardiaque biologique

    No full text
    En étudiant des modèles de cellules souches, nous avons montré que l'induction des oscillations dans des myocytes ventriculaires normaux inexcitables n'est pas possible en les connectant à des cellules souches. Jusqu'à aujourd'hui, cette induction n'a jamais été démontrée même sous de bonnes conditions. Les résultats référencés ne font apparaître qu'une augmentation de la fréquence d'oscillation (soit dans les cellules en culture, soit dans le coeur). Les oscillations ne deviennent possibles que pour les myocytes qui ont un seuil d'excitation des oscillations induites bien plus bas que la normale. Seules les méthodes qui diminuent le niveau d'expression de courant I_K1 ou augment le niveau d'expression de courant I_Ca donnent des résultats. Il existe une autre approche, qui consiste à ne pas connecter directement les cellules souches à des myocytes, mais à d'autres types de cellules cardiaques avec un seuil d'excitation très bas. De cette façon, des oscillations sont induites sans avoir à modifier le courant I_K1. Ces cellules transitoires pourront être des cellules AV node, de Purkinje ou des cellules voisinant SA node. Pour amener un tissus cardiac à oscillation, les pacemakers artificiels de petite taille exigent des courants d'une magnitude bien plus élevée que dans les expériences menées avec des paires de cellules ou des cultures. Pour éviter ce problème, la taille des pacemakers artificiels doit être plus grande que la constante électrotonique . Pour le courant pacemaker, la plupart des expérimentateurs ont l'habitude de ne mesurer que l'inactivation. Cette seule mesure ne suffit pas pour étudier les oscillations. Les définitions incluant à la fois inactivation et activation du courant pacemaker doivent prévaloir contrairement à la tradition dans le domaine.By investigating stem cell models, we showed that induction of oscillation in normal ventricular myocytes by connecting stem cells to them is not possible. Induction of oscillations by stem cells has not been demonstrated yet, in well controlled conditions. Reported results demonstrate only increase of oscillation frequency (in cell culture or in whole hearts). Oscillations become possible only for myocytes with a much lower than normal threshold for inducing oscillations. Approaches like decreasing of expression level of I_K1 current or increasing I_Ca current in myocytes are successful. Another possible approach is connecting stem cells not directly to myocytes but to other types of cardiac cells with a lower oscillation threshold. This induces oscillation without any need to affect I_K1, I_Ca current. These transitional cells might be AV node cells, Purkinje cells or cells in the vicinity of the sinus node. To drive cardiac tissue, small size artificial pacemakers need to deliver currents orders of magnitude larger than those used in cell pair or cell culture experiments. To avoid this, the size of the pacemaker created should be several times larger than the electrotonic constant . For pacemaker currents, most experimenters traditionally measure only inactivation. A description of a stem cell including inactivation only, is not precise enough to study oscillations. A description including both, activation and inactivation of the pacemaker current should be used, contrary to tradition in this field.NICE-BU Sciences (060882101) / SudocSudocFranceF

    The role of the extra cellular matrix on memory

    No full text
    forthcoming article published online at www.m-hikari.comInternational audienceWe expose first a biological model of memory based on one hand of the mechanical oscillations of axons during action potential and on the other hand on the changes in the extra cellular matrix composition when a mechanical strain is applied on it. Due to these changes, the stiffness of the extra cellular matrix along the most excited neurons will increase close to these neurons due to the growth of astrocytes around them and to the elastoplastic behavior of collagen. This will create preferential paths linked to a memory effect. In a second part, we expose a physical model based on random walk of the action potential on the array composed of dendrites and axons. This last model shows that repetition of the same event leads to long time memory of this event and that paradoxical sleep leads to the linking of different events put into memory
    corecore