19 research outputs found

    Arm-interarm gas abundance variations explored with MUSE: the role of spiral structure in the chemical enrichment of galaxies

    Get PDF
    Spiral arms are the most characteristic features of disc galaxies, easily distinguishable due to their association with ongoing star formation. However, the role of spiral structure in the chemical evolution of galaxies is unclear. Here, we explore gas-phase abundance variations between arm and interarm regions for a sample of 45 spiral galaxies using high spatial resolution VLT/MUSE integral field spectroscopy data. We report the presence of more metal-rich H II regions in the spiral arms with respect to the corresponding interarm regions for a large subsample of galaxies (45-65 per cent depending on the adopted calibrator for the abundance derivation). A small percentage of the sample is observed to display the opposite trend, i.e. more metal-poor H II regions in the spiral arms compared to that of the interarms (5-20 per cent depending on the calibrator). We investigate the dependence of the variations with three galaxy properties: the stellar mass, the presence of bars, and the flocculent/grand design appearance of spiral arms. In all cases, we observe that the arm interarm abundance differences are larger (positive) in more massive and grand-design galaxies. This is confirmed by an analogous spaxel-wise analysis, which also shows a noticeable effect of the presence of galactic bars, with barred systems presenting larger (positive) arm-interarm abundance variations than unbarred systems. The comparison of our results with new predictions from theoretical models exploring the nature of the spirals would highly impact on our knowledge on how these structures form and affect their host galaxies

    Imprints of galaxy evolution on H ii regions Memory of the past uncovered by the CALIFA survey

    Full text link
    H ii regions in galaxies are the sites of star formation and thus particular places to understand the build-up of stellar mass in the universe. The line ratios of this ionized gas are frequently used to characterize the ionization conditions. We use the Hii regions catalogue from the CALIFA survey (~5000 H ii regions), to explore their distribution across the classical [OIII]/Hbeta vs. [NII]/Halpha diagnostic diagram, and how it depends on the oxygen abundance, ionization parameter, electron density, and dust attenuation. We compared the line ratios with predictions from photoionization models. Finally, we explore the dependences on the properties of the host galaxies, the location within those galaxies and the properties of the underlying stellar population. We found that the location within the BPT diagrams is not totally predicted by photoionization models. Indeed, it depends on the properties of the host galaxies, their galactocentric distances and the properties of the underlying stellar population. These results indicate that although H ii regions are short lived events, they are affected by the total underlying stellar population. One may say that H ii regions keep a memory of the stellar evolution and chemical enrichment that have left an imprint on the both the ionizing stellar population and the ionized gasComment: 18 pages, 8 figures, accepted for publishing in A&

    Two-dimensional multi-component photometric decomposition of CALIFA galaxies

    Get PDF
    We present a two-dimensional multi-component photometric decomposition of 404 galaxies from the Calar Alto Legacy Integral Field Area Data Release 3 (CALIFA-DR3). They represent all possible galaxies with no clear signs of interaction and not strongly inclined in the final CALIFA data release. Galaxies are modelled in the g, r, and i Sloan Digital Sky Survey (SDSS) images including, when appropriate, a nuclear point source, bulge, bar, and an exponential or broken disc component. We use a human-supervised approach to determine the optimal number of structures to be included in the fit. The dataset, including the photometric parameters of the CALIFA sample, is released together with statistical errors and a visual analysis of the quality of each fit. The analysis of the photometric components reveals a clear segregation of the structural composition of galaxies with stellar mass. At high masses (log(M⋆/M⊙) > 11), the galaxy population is dominated by galaxies modelled with a single Sérsic or a bulge+disc with a bulge-to-total (B/T) luminosity ratio B/T > 0.2. At intermediate masses (9.5 < log(M⋆/M⊙) < 11), galaxies described with bulge+disc but B/T < 0.2 are preponderant, whereas, at the low mass end (log(M⋆/M⊙)< 9.5), the prevailing population is constituted by galaxies modelled with either pure discs or nuclear point sources+discs (i.e., no discernible bulge). We obtain that 57% of the volume corrected sample of disc galaxies in the CALIFA sample host a bar. This bar fraction shows a significant drop with increasing galaxy mass in the range 9.5 < log(M⋆/M⊙) < 11.5. The analyses of the extended multi-component radial profile result in a volume-corrected distribution of 62%, 28%, and 10% for the so-called Type I (pure exponential), Type II (down-bending), and Type III (up-bending) disc profiles, respectively. These fractions are in discordance with previous findings. We argue that the different methodologies used to detect the breaks are the main cause for these differences.PostprintPeer reviewe

    Morpho-kinematic properties of field S0 bulges in the CALIFA survey

    Get PDF
    We study a sample of 28 S0 galaxies extracted from the integral-field spectroscopic (IFS) survey CALIFA. We combine an accurate two-dimensional (2D) multi-component photometric decomposition with the IFS kinematic properties of their bulges to understand their formation scenario. Our final sample is representative of S0s with high stellar masses (Mstar/Msun>1010M_{star}/M_{sun} > 10^{10}). They lay mainly on the red sequence and live in relatively isolated environments similar to that of the field and loose groups. We use our 2D photometric decomposition to define the size and photometric properties of the bulges, as well as their location within the galaxies. We perform mock spectroscopic simulations mimicking our observed galaxies to quantify the impact of the underlying disc on our bulge kinematic measurements (λ\lambda and v/σv/\sigma). We compare our bulge corrected kinematic measurements with the results from Schwarzschild dynamical modelling. The good agreement confirms the robustness of our results and allows us to use bulge reprojected values of λ\lambda and v/σv/\sigma. We find that the photometric (nn and B/TB/T) and kinematic (v/σv/\sigma and λ\lambda) properties of our field S0 bulges are not correlated. We demonstrate that this morpho-kinematic decoupling is intrinsic to the bulges and it is not due to projection effects. We conclude that photometric diagnostics to separate different types of bulges (disc-like vs classical) might not be useful for S0 galaxies. The morpho-kinematics properties of S0 bulges derived in this paper suggest that they are mainly formed by dissipation processes happening at high redshift, but dedicated high-resolution simulations are necessary to better identify their origin.Comment: 31 pages, 19 figures. Accepted for publication in MNRA

    Pipe3d, a pipeline to analyze integral field spectroscopy data: II Analysis sequence and califa dataproducts

    Get PDF
    Presentamos una version mejorada de FIT3D, una herramienta de ajuste para el analisis de las poblaciones estelares y el gas ionizado en espectros de galaxias de resolucion intermedia. La misma se desarrollo para el análisis de datos de espectroscopía de campo integral y es la base de Pipe3D, un dataducto usado en el analisis de datos de los muestreos CALIFA, MaNGA y SAMI. Describimos la filosof´ıa y los pasos seguidos en el ajuste, presentando un conjunto amplio de simulaciones con el fin de estimar la precisión de los parametros derivados, mostrando el resultado de dichas simulaciones. Finalmente, comparamos el resultado del analisis con FIT3D y el obtenido mediante otros paquetes de uso frecuente, encontrando que los parametros derivados son totalmente compatibles.We present Pipe3D, an analysis pipeline based on the FIT3D fitting tool, developed to explore the properties of the stellar populations and ionized gas of integral field spectroscopy (IFS) data. Pipe3D was created to provide coherent, simple to distribute, and comparable dataproducts, independently of the origin of the data, focused on the data of the most recent IFU surveys (e.g., CALIFA, MaNGA, and SAMI), and the last generation IFS instruments (e.g., MUSE). In this article we describe the di fferent steps involved in the analysis of the data, illustrating them by showing the dataproducts derived for NGC 2916, observed by CALIFA and P-MaNGA. As a practical example of the pipeline we present the complete set of dataproducts derived for the 200 datacubes that comprises the V500 setup of the CALIFA Data Release 2 (DR2), making them freely available through the network. Finally, we explore the hypothesis that the properties of the stellar populations and ionized gas of galaxies at the e ffective radius are representative of the overall average ones, finding that this is indeed the case.Fil: Sánchez, S. F.. Universidad Nacional Autonoma de Mexico. Instituto de Astronomia; MéxicoFil: Pérez, E.. Instituto de Astrofísica de Andalucía; España. Consejo Superior de Investigaciones Científicas; EspañaFil: Sanchez Blazquez, P.. Departamento de Fisica Teorica ; Facultad de Ciencias ; Universidad Autonoma de Madrid;Fil: García Benito, Rubén. Instituto de Astrofísica de Andalucía; España. Consejo Superior de Investigaciones Científicas; EspañaFil: Ibarra Mede, H. J.. Space Telescope Science Institute; Estados UnidosFil: González, J. J.. Universidad Nacional Autonoma de Mexico. Instituto de Astronomia; MéxicoFil: Rosales Ortega, F. F.. Instituto Nacional de Astrofísica, Optica y Electrónica ; MéxicoFil: Sánchez Menguiano, L.. Instituto de Astrofísica de Andalucía; España. Consejo Superior de Investigaciones Científicas; EspañaFil: Ascasibar, Y.. Universidad Autónoma de Barcelona. Facultad de Física. Departamento Astronomía y Meteorología; EspañaFil: Bitsakis, T.. Universidad Nacional Autonoma de Mexico. Instituto de Astronomia; MéxicoFil: Law, D.. Space Telescope Science Institute; Estados UnidosFil: Cano Díaz, M.. Universidad Nacional Autonoma de Mexico. Instituto de Astronomia; MéxicoFil: López Cobá, C.. Universidad Nacional Autonoma de Mexico. Instituto de Astronomia; MéxicoFil: Marino, R. A.. Universidad Complutense de Madrid; EspañaFil: Gil de Paz, A.. Australian Astronomical Observatory; AustraliaFil: López Sánchez, A.. Instituto de Astrofísica de Canarias (iac); EspañaFil: Barrera Ballesteros, Jorge K.. Instituto de Astrofísica de Canarias; EspañaFil: Galbany, Lluís. Millennium Institute Of Astrophysics; Chile. Universidad de Chile; ChileFil: Mast, Damian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Abril Malgarejo, V.. Universidad Nacional Autonoma de Mexico. Instituto de Astronomia; MéxicoFil: Roman Lopes, A.. Universidad de La Serena; Chil

    The 16th Data Release of the Sloan Digital Sky Surveys: First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra

    Get PDF
    This paper documents the 16th data release (DR16) from the Sloan Digital Sky Surveys (SDSS), the fourth and penultimate from the fourth phase (SDSS-IV). This is the first release of data from the Southern Hemisphere survey of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2); new data from APOGEE-2 North are also included. DR16 is also notable as the final data release for the main cosmological program of the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), and all raw and reduced spectra from that project are released here. DR16 also includes all the data from the Time Domain Spectroscopic Survey and new data from the SPectroscopic IDentification of ERosita Survey programs, both of which were co-observed on eBOSS plates. DR16 has no new data from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey (or the MaNGA Stellar Library "MaStar"). We also preview future SDSS-V operations (due to start in 2020), and summarize plans for the final SDSS-IV data release (DR17)

    The 16th Data Release of the Sloan Digital Sky Surveys : First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra

    Get PDF
    This paper documents the 16th data release (DR16) from the Sloan Digital Sky Surveys (SDSS), the fourth and penultimate from the fourth phase (SDSS-IV). This is the first release of data from the Southern Hemisphere survey of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2); new data from APOGEE-2 North are also included. DR16 is also notable as the final data release for the main cosmological program of the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), and all raw and reduced spectra from that project are released here. DR16 also includes all the data from the Time Domain Spectroscopic Survey and new data from the SPectroscopic IDentification of ERosita Survey programs, both of which were co-observed on eBOSS plates. DR16 has no new data from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey (or the MaNGA Stellar Library "MaStar"). We also preview future SDSS-V operations (due to start in 2020), and summarize plans for the final SDSS-IV data release (DR17).Peer reviewe

    No direct coupling between bending of galaxy disc stellar age and light profiles

    Get PDF
    We study the stellar properties of 44 face-on spiral galaxies from the Calar Alto Legacy Integral Field Area survey via full spectrum fitting techniques. We compare the age profiles with the surface brightness distribution in order to highlight differences between profile types (type I, exponential profile; and II, down-bending profile). We observe an upturn ('U-shape') in the age profiles for 17 out of these 44 galaxies with reliable stellar information up to their outer parts. This 'U-shape' is not a unique feature for type II galaxies but can be observed in type I as well. These findings suggest that the mechanisms shaping the surface brightness and stellar population distributions are not directly coupled. This upturn in age is only observable in the light-weighted profiles while it flattens out in the mass-weighted profiles. Given recent results on the outer parts of nearby systems and the results presented in this Letter, one of the most plausible explanations for the age upturn is an early formation of the entire disc (~10 Gyr ago) followed by an inside-out quenching of the star formation.This research has been partly supported by the Spanish Ministry of Science and Innovation under grants AYA2011-24728, AYA2013-48226-C3-1-P and Consolider-Ingenio CSD2010-00064; and by the Junta de Andalucia (FQM-108). TRL thanks the support of the Spanish Ministerio de Educacion, Cultura y Deporte (FPU fellowship).Peer Reviewe
    corecore