20 research outputs found

    Central GPR109A Mediates Neuronal Oxidative Stress and Pressor Response in Conscious Rats

    Get PDF
    The primary goal of this study was to characterize the role of GPR109A in the rostral ventrolateral medulla (RVLM) in blood pressure (BP) regulation and to elucidate the mechanisms involved in the hypertensive response elicited by central GPR109A activation. The central hypothesis of this study was "central GPR109A activation causes neuronal oxidative stress and pressor response via local glutamate/prostaglandins release". The data provide the first evidence for GPR109A expression in the RVLM, the major cardiovascular regulatory nucleus of the brainstem, and in pheochromocytoma cell line (PC12 cells), used as surrogates of the RVLM neurons. GPR109A co-localization was evident in tyrosine hydroxylase (TH)-expressing neurons and in PC12 cells. The anti-hyperlipidemic drug, nicotinic acid (NA) a known GPR109A agonist that activate the receptor and Ca2+-dependently release prostaglandins (PGs), was used in the study. Our findings demonstrated that intra-RVLM activation of GPR109A receptors with NA produced a robust dose-dependent glutamate-like elevation in sympathetic tone and BP in normotensive conscious male Sprague Dawley (SD) rats. The pressor response was abolished by prior blockade of the NMDA glutamate receptor (NMDAR) using 2-amino-5-phosphonopentanoic acid (AP5) or the prostanoid EP3 receptor (EP3R) using N-[(5-Bromo-2-methoxyphenyl) sulfonyl]-3-[2-(2-naphthalenylmethyl)phenyl]-2-propenamide (L-798106). Further, the NA pressor response was exacerbated by a prior application of the glutamate uptake inhibitor, L-trans-Pyrrolidine-2,4-dicarboxylic acid (PDC). Ex vivo studies revealed that intra-RVLM GPR109A activation (NA; 20[mu]g) increased local prostaglandin E2 (PGE2) levels, enhanced RVLM ERK1/2 and nNOS phosphorylation and increased c-Fos immunoreactivity. Further, NA induced oxidative stress in the RVLM of NA-treated rats (increased ROS levels and NADPH oxidase activity and decreased catalase activity). Prior EP3R blockade (L-798106) abrogated the biochemical and the pressor response caused by intra-RVLM NA. NMDAR (AP5) or EP3R blockade similarly abolished NA-mediated pressor response, indicating the involvement of both glutamate and PGE2 in this effect. Selective inhibition of RVLM nNOS (N[omega]-propyl-L-arginine; NPLA) abolished the intra-RVLM NA-evoked pressor response. Further, NPLA abrogated the GPR109A-mediated increases in RVLM nNOS phosphorylation and c-Fos and ROS levels. Our in vitro (PC12) studies supported and extended the in-vivo findings as NA increased Ca2+, PGE2, L-glutamate and NO levels as well as ROS levels in cultured PC12 cells. The increase in L-glutamate level is likely mediated by PGE2/EP3R because L-798106 attenuated NA or PGE2-evoked L-glutamate release. The above-mentioned effects are mediated via GPR109A because the use of the inactive isomer, IsoNA failed to produce any hemodynamic or biochemical changes. Further, NA failed to increase Ca2+ or L-glutamate levels in PC12 cells following siRNA-evoked GPR109A knockdown. Collectively, these studies provide insight into identifying the role of central GPR109A activation in cardiovascular regulation in conscious animals and the potential mechanisms involved in this effect

    Syzygium aqueum: A polyphenol- rich leaf extract exhibits antioxidant, hepatoprotective, pain-killing and anti-inflammatory activities in animal models

    Get PDF
    Syzygium aqueum is widely used in folk medicine. A polyphenol-rich extract from its leaves demonstrated a plethora of substantial pharmacological properties. The extract showed solid antioxidant properties in vitro and protected human keratinocytes (HaCaT cells) against UVA damage. The extract also reduced the elevated levels of ALT, AST, total bilirubin (TB), total cholesterol (TC) and triglycerides (TG) in rats with acute CCl4 intoxication. In addition to reducing the high MDA level, the extract noticeably restored GSH and SOD to the normal control levels in liver tissue homogenates and counteracted the deleterious histopathologic changes in liver after CCl4 injection. Additionally, the extract exhibited promising anti-inflammatory activities in vitro where it inhibited LOX, COX-1, and COX-2 with a higher COX-2 selectivity than that of indomethacin and diclofenac and reduced the extent of lysis of erythrocytes upon incubation with hypotonic buffer solution. S. aqueum extract also markedly reduced leukocyte numbers with similar activities to diclofenac in rats challenged with carrageenan. Additionally, administration of the extract abolished writhes induced by acetic acid in mice and prolonged the response latency in hot plate test. Meanwhile, the identified polyphenolics from the extract showed a certain affinity for the active pockets of 5-lipoxygenase (5-LOX), cyclooxygenase-1 (COX-1) and cyclooxygenase- 2 (COX-2) explaining the observed anti-inflammatory activities. Finally, 87 secondary metabolites (mostly phenolics) were tentatively identified in the extract based on LCMS/ MS analyses. Syzygium aqueum displays good protection against oxidative stress, free radicals, and could be a good candidate for treating oxidative stress related diseases

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication

    Central GPR109A Mediates Neuronal Oxidative Stress and Pressor Response in Conscious Rats

    No full text
    The primary goal of this study was to characterize the role of GPR109A in the rostral ventrolateral medulla (RVLM) in blood pressure (BP) regulation and to elucidate the mechanisms involved in the hypertensive response elicited by central GPR109A activation. The central hypothesis of this study was "central GPR109A activation causes neuronal oxidative stress and pressor response via local glutamate/prostaglandins release". The data provide the first evidence for GPR109A expression in the RVLM, the major cardiovascular regulatory nucleus of the brainstem, and in pheochromocytoma cell line (PC12 cells), used as surrogates of the RVLM neurons. GPR109A co-localization was evident in tyrosine hydroxylase (TH)-expressing neurons and in PC12 cells. The anti-hyperlipidemic drug, nicotinic acid (NA) a known GPR109A agonist that activate the receptor and Ca2+-dependently release prostaglandins (PGs), was used in the study. Our findings demonstrated that intra-RVLM activation of GPR109A receptors with NA produced a robust dose-dependent glutamate-like elevation in sympathetic tone and BP in normotensive conscious male Sprague Dawley (SD) rats. The pressor response was abolished by prior blockade of the NMDA glutamate receptor (NMDAR) using 2-amino-5-phosphonopentanoic acid (AP5) or the prostanoid EP3 receptor (EP3R) using N-[(5-Bromo-2-methoxyphenyl) sulfonyl]-3-[2-(2-naphthalenylmethyl)phenyl]-2-propenamide (L-798106). Further, the NA pressor response was exacerbated by a prior application of the glutamate uptake inhibitor, L-trans-Pyrrolidine-2,4-dicarboxylic acid (PDC). Ex vivo studies revealed that intra-RVLM GPR109A activation (NA\; 20[mu]g) increased local prostaglandin E2 (PGE2) levels, enhanced RVLM ERK1/2 and nNOS phosphorylation and increased c-Fos immunoreactivity. Further, NA induced oxidative stress in the RVLM of NA-treated rats (increased ROS levels and NADPH oxidase activity and decreased catalase activity). Prior EP3R blockade (L-798106) abrogated the biochemical and the pressor response caused by intra-RVLM NA. NMDAR (AP5) or EP3R blockade similarly abolished NA-mediated pressor response, indicating the involvement of both glutamate and PGE2 in this effect. Selective inhibition of RVLM nNOS (N[omega]-propyl-L-arginine\; NPLA) abolished the intra-RVLM NA-evoked pressor response. Further, NPLA abrogated the GPR109A-mediated increases in RVLM nNOS phosphorylation and c-Fos and ROS levels. Our in vitro (PC12) studies supported and extended the in-vivo findings as NA increased Ca2+, PGE2, L-glutamate and NO levels as well as ROS levels in cultured PC12 cells. The increase in L-glutamate level is likely mediated by PGE2/EP3R because L-798106 attenuated NA or PGE2-evoked L-glutamate release. The above-mentioned effects are mediated via GPR109A because the use of the inactive isomer, IsoNA failed to produce any hemodynamic or biochemical changes. Further, NA failed to increase Ca2+ or L-glutamate levels in PC12 cells following siRNA-evoked GPR109A knockdown. Collectively, these studies provide insight into identifying the role of central GPR109A activation in cardiovascular regulation in conscious animals and the potential mechanisms involved in this effect

    Triple targeting of mutant EGFRL858R/T790M, COX-2, and 15-LOX: design and synthesis of novel quinazolinone tethered phenyl urea derivatives for anti-inflammatory and anticancer evaluation

    No full text
    AbstractWe designed and synthesised novel quinazolinone tethered phenyl urea derivatives (6a–p) that triple target the double mutant EGFRL858R/T790M, COX-2, and 15-LOX. Compounds (6e, 6d, 6j, 6m, and 6n) not only had low micromolar IC50 inhibitory activities against the three targets, but they also showed good selectivity for COX-2 over COX-1 and for EGFRL858R/T790M over wild-type EGFR. Except for 6e and 6n, all of the tested compounds inhibited the NO production significantly more potently than celecoxib, diclofenac, and indomethacin. Compounds 6i and 6k reduced ROS levels more effectively than celecoxib and diclofenac. In terms of inhibiting TNF-α production, 6o-treated cells showed TNF-α level, which is ∼10 times lower than celecoxib. Furthermore, 6e and 6j had the highest anticancer activity against the breast cancer cell line BT-459 with growth inhibition percentages of 67.14 and 70.07%, respectively. Docking studies confirm their favoured binding affinity. The proposed compounds could be promising multi-targeted leads

    Cardiac and Renal SARS-CoV-2 Viral Entry Protein Regulation by Androgens and Diet: Implications for Polycystic Ovary Syndrome and COVID-19

    No full text
    The susceptibility and the severity of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are associated with hyperandrogenism, obesity, and preexisting pulmonary, metabolic, renal, and cardiac conditions. Polycystic ovary syndrome (PCOS), the most common endocrine disorder in premenopausal women, is associated with obesity, hyperandrogenism, and cardiometabolic dysregulations. We analyzed cardiac, renal, circulatory, and urinary SARS-CoV-2 viral entry proteins (ACE2, TMPRSS2, TMPRSS4, furin, cathepsin L, and ADAM17) and androgen receptor (AR) expression, in a peripubertal androgen exposure model of PCOS. Peripubertal female mice were treated with dihydrotestosterone (DHT) and low (LFD) or high (HFD) fat diet for 90 days. HFD exacerbated DHT-induced increase in body weight, fat mass, and cardiac and renal hypertrophy. In the heart, DHT upregulated AR protein in both LFD and HFD, ACE2 in HFD, and ADAM17 in LFD. In the kidney, AR protein expression was upregulated by both DHT and HFD. Moreover, ACE2 and ADAM17 were upregulated by DHT in both diets. Renal TMPRSS2, furin, and cathepsin L were upregulated by DHT and differentially modulated by the diet. DHT upregulated urinary ACE2 in both diets, while neither treatment modified serum ACE2. Renal AR mRNA expression positively correlated with Ace2, Tmprss2, furin, cathepsin L, and ADAM17. Our findings suggest that women with PCOS could be a population with a high risk of COVID-19-associated cardiac and renal complications. Furthermore, our study suggests that weight loss by lifestyle modifications (i.e., diet) could potentially mitigate COVID-19-associated deleterious cardiorenal outcomes in women with PCOS

    Anti-Inflammatory, Antipyretic, and Analgesic Properties of Potamogeton perfoliatus Extract: In Vitro and In Vivo Study

    No full text
    Natural antioxidants, especially those of plant origins, have shown a plethora of biological activities with substantial economic value, as they can be extracted from agro-wastes and/or under exploited plant species. The perennial hydrophyte, Potamogeton perfoliatus, has been used traditionally to treat several health disorders; however, little is known about its biological and its medicinal effects. Here, we used an integrated in vitro and in vivo framework to examine the potential effect of P. perfoliatus on oxidative stress, nociception, inflammatory models, and brewer’s yeast-induced pyrexia in mice. Our results suggested a consistent in vitro inhibition of three enzymes, namely 5-lipoxygenase, cyclooxygenases 1 and 2 (COX-1 and COX-2), as well as a potent antioxidant effect. These results were confirmed in vivo where the studied extract attenuated carrageenan-induced paw edema, carrageenan-induced leukocyte migration into the peritoneal cavity by 25, 44 and 64% at 200, 400 and 600 mg/kg, p.o., respectively. Moreover, the extract decreased acetic acid-induced vascular permeability by 45% at 600 mg/kg, p.o., and chemical hyperalgesia in mice by 86% by 400 mg/kg, p.o., in acetic acid-induced writhing assay. The extract (400 mg/kg) showed a longer response latency at the 3 h time point (2.5 fold of the control) similar to the nalbuphine, the standard opioid analgesic. Additionally, pronounced antipyretic effects were observed at 600 mg/kg, comparable to paracetamol. Using LC-MS/MS, we identified 15 secondary metabolites that most likely contributed to the obtained biological activities. Altogether, our findings indicate that P. perfoliatus has anti-inflammatory, antioxidant, analgesic and antipyretic effects, thus supporting its traditional use and promoting its valorization as a potential candidate in treating oxidative stress-associated diseases

    HPLC-ESI-MS/MS Profiling of Polyphenolics of a Leaf Extract from <i>Alpinia zerumbet</i> (Zingiberaceae) and Its Anti-Inflammatory, Anti-Nociceptive, and Antipyretic Activities In Vivo

    No full text
    Reactive oxygen species (ROS) have been linked to several health conditions, among them inflammation. Natural antioxidants may attenuate this damage. Our study aimed to investigate the chemical composition of a methanol leaf extract from Alpinia zerumbet and its possible antioxidant, anti-inflammatory, anti-nociceptive, and antipyretic effects. Altogether, 37 compounds, representing benzoic and cinnamic acid derivatives and flavonoids (aglycones and glycosides), were characterized. The extract showed substantial in vitro antioxidant effects, and inhibited both cyclooxygenase 1 (COX-1) and cyclooxygenase 2 (COX-2) in vitro, with a higher selectivity towards COX-2. It also inhibited 5-lipoxygenase (LOX) activity in vitro with nearly double the potency of zileuton, a reference 5-lipoxygenase (LOX) inhibitor. The extract exhibited anti-inflammatory effects against carrageenan-induced rat hind paw edema, and suppressed leukocyte infiltration into the peritoneal cavity in carrageenan-treated mice. Furthermore, it possessed antipyretic effects against fever induced by subcutaneous injection of Brewer&#8217;s yeast in mice. Additionally, the extract demonstrated both central and peripheral anti-nociceptive effects in mice, as manifested by a decrease in the count of writhing, induced with acetic acid and an increase in the latency time in the hot plate test. These findings suggest that the leaf extract from Alpinia zerumbet could be a candidate for the development of a drug to treat inflammation and ROS related disorders
    corecore