90 research outputs found

    BIOSORPTION AND RECOVERY OF HEAVY METALS FROM AQUEOUS SOLUTIONS BY EICHHORNIA CRASSIPES (WATER HYACINTH) ASH

    Get PDF
    Heavy metal’s release without treatment poses a significant threat to the environment. Heavy metals are non-biodegradable and persistent. In the present study the ash of water hyacinth (Eichhornia crassipes), was used to remove six metals from aqueous solutions through biosorption. Results of batch and column experiments showed excellent adsorption capacity. Removal of lead, chromium, zinc, cadmium, copper, and nickel was 29.83, 1.263, 1.575, 3.323, 2.984 and 1.978 ”gg-1, respectively. The biosorptive capacity was maximum with pH >8.00. Desorption in ”gg-1 of ash for lead, chromium, zinc, cadmium, copper, and nickel was 18.10, 9.99, 11.99, 27.54, 21.09, and 3.71 respectively. Adsorption/desorption of these metals from ash showed the potential of this technology for recovery of metals for further usages. Hydrogen adsorption was also studied with a Sievert-type apparatus. Hydrogen adsorption experiments showed significant storage capacity of water hyacinth ash

    Comparative Susceptibility of Different Cell Cultures and Chicken Embryo Organ Cultures to Infectious Bursal Disease Virus of Poultry

    Get PDF
    Infectious bursal disease (IBD) is an acute highly contagious viral infection of young chickens often resulting in immunosuppression. Inactivated vaccines play significant role in protection against IBD. Mammalian cell lines could be used for producing such vaccines. In present study twenty-five, local strains of IBD virus were inoculated into chicken embryo bursa cell culture, liver cell culture, kidney cell culture, fibroblast cell culture and Vero cell lines for cytopathic effect. Moreover comparative susceptibility of chicken embryo bursa organ, embryo liver organ and embryo kidney organ cultures, to infectious bursal disease virus were studied. Chicken embryo bursa cell line was found to be most susceptible (90%) followed by Vero cell lines (70%), fibroblast cell lines (65%), kidney cell lines (50%) and liver cell lines (45%). While chicken embryo bursa organ culture gave maximum cytopathic effect (80%) followed by chicken embryo liver (60%) and kidney organ (45%). From these studies it is concluded that after bursa cell lines, Vero cell lines gave maximum cytopathic effect yielding high number of virus particles and are easy to maintain. Thus Vero cell lines can be used to produce infectious bursal disease vaccines using local isolates

    Characterization of Toxic Metals in Tobacco, Tobacco Smoke, and Cigarette Ash from Selected Imported and Local Brands in Pakistan

    Get PDF
    In this study, concentrations of Cd, Ni, Pb, and Cr were determined in tobacco, tobacco smoke-condensate, and cigarette ash for selected brands used in Pakistan. Smoking apparatus was designed for metal extraction from cigarette smoke. Samples were digested through microwave digester and then analyzed by flame atomic absorption spectrophotometer (FAAS). Higher concentration of Ni was detected in imported brands than the counterparts in the local brands. Pb levels were however higher in local brands while significant concentration of Cd was observed in both brands. For Cr, the level in tobacco of local brands was higher than their emitted smoke, whereas imported brands showed higher level in smoke than in tobacco. The cigarette ash retained 65 to 75% of the metal and about 25 to 30% went into the body. While this study revealed the serious requirement to standardize the manufacturing of tobacco products, more importantly is the urgent need for stronger enforcements to put in place to alert the general population about the hazardous effects of cigarettes and the health risks associated with these toxic metals

    Common Genotypes of Hepatitis B virus prevalent in Injecting drug abusers (addicts) of North West Frontier Province of Pakistan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The epidemiological significance of Hepatitis B virus genotypes has been well established and becoming an essential concern day by day however, much little is known about the mixed infection with more than one Hepatitis B virus genotypes and their clinical relevance.</p> <p>Methods</p> <p>Intravenous drug abusers are considered as a major risk group for the acquisition and transmission of blood borne infections like hepatitis B, however, in Pakistan, no such data has ever been reported about the epidemiology of HBV and its genotypes in Injecting Drug Users. 250 individuals were analyzed for hepatitis B virus genotypes after prior screening with serological assay for the detection of HBsAg.</p> <p>Results</p> <p>56 (22.4%) individuals were found positive on ELSIA for HBsAg. The genotype distribution was found to be as: genotype D, 62.5%; genotype A, 8.92% while 28.57% individuals were found to be infected with a mixture of genotype A and D.</p> <p>Conclusion</p> <p>There is an urgent need of the time to develop public health care policies with special emphasis towards the control of HBV transmission through high risk groups especially Injecting Drug Users.</p

    Serology based disease status of Pakistani population infected with Hepatitis B virus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The infection rate of hepatitis B virus is continuously increasing in Pakistan. Therefore, a comprehensive study of epidemiological data is the need of time.</p> <p>Methods</p> <p>A total of 1300 individuals were screened for HBV infection markers including HBsAg, anti-HBsAg, HBeAg and anti-HBcAg. The association of these disease indicators was compared with patients' epidemiological characteristics like age, socio-economic status and residential area to analyze and find out the possible correlation among these variables and the patients disease status.</p> <p>Results</p> <p>52 (4%) individuals were found positive for HBsAg with mean age 23.5 ± 3.7 years. 9.30%, 33.47% and 12% individuals had HBeAg, antibodies for HBsAg, and antibodies for HBcAg respectively. HBsAg seropositivity rate was significantly associated (<it>p </it>= 0.03) with the residing locality indicating high infection in rural areas. Antibodies titer against HBsAg decreased with the increasing age reflecting an inverse correlation.</p> <p>Conclusion</p> <p>Our results indicate high prevalence rate of Hepatitis B virus infection and nationwide vaccination campaigns along with public awareness and educational programs are needed to be practiced urgently.</p

    Molecular epidemiology of Hepatitis B virus genotypes in Pakistan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Eight genotypes of Hepatitis B virus designated A-H, have been known but in Pakistan, no such data is available on the prevalent HBV genotypes. Therefore, the subject study was conducted to determine HBV genotypes in the indigenous Pakistani population.</p> <p>Methods</p> <p>A total of 690 individuals were enrolled for HBV screening with EIA and nested PCR. Positive samples were further analyzed to determine HBV genotypes (A-F) by multiplex-PCR using type specific primers.</p> <p>Results</p> <p>110 (15.94%) individuals were positive for HBV, including 64% males and 36% females. Out of these, 66 samples (65.34%) were classified into genotype D, 27 (26.73%) were of genotype B while 5(4.95%) had genotype A. In 3 (2.98%) samples, multiple genotypes were detected (genotype A+B; 2(1.99%) and genotypes B+D; 1(0.99%). Nine (8.18%) samples remained untyable.</p> <p>Conclusion</p> <p>In Asia, genotypes B and C are the most prevalent but our study reveals that genotype D is predominant and HBV infection constitutes a significant health problem in Pakistan.</p

    Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background: Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods: We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories. Findings: From 1950 to 2017, TFRs decreased by 49\ub74% (95% uncertainty interval [UI] 46\ub74–52\ub70). The TFR decreased from 4\ub77 livebirths (4\ub75–4\ub79) to 2\ub74 livebirths (2\ub72–2\ub75), and the ASFR of mothers aged 10–19 years decreased from 37 livebirths (34–40) to 22 livebirths (19–24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83\ub78 million people per year since 1985. The global population increased by 197\ub72% (193\ub73–200\ub78) since 1950, from 2\ub76 billion (2\ub75–2\ub76) to 7\ub76 billion (7\ub74–7\ub79) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2\ub70%; this rate then remained nearly constant until 1970 and then decreased to 1\ub71% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2\ub75% in 1963 to 0\ub77% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2\ub77%. The global average age increased from 26\ub76 years in 1950 to 32\ub71 years in 2017, and the proportion of the population that is of working age (age 15–64 years) increased from 59\ub79% to 65\ub73%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1\ub70 livebirths (95% UI 0\ub79–1\ub72) in Cyprus to a high of 7\ub71 livebirths (6\ub78–7\ub74) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0\ub708 livebirths (0\ub707–0\ub709) in South Korea to 2\ub74 livebirths (2\ub72–2\ub76) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0\ub73 livebirths (0\ub73–0\ub74) in Puerto Rico to a high of 3\ub71 livebirths (3\ub70–3\ub72) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2\ub70% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger. Interpretation: Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress. Funding: Bill &amp; Melinda Gates Foundation

    Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background: Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods: We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories. Findings: From 1950 to 2017, TFRs decreased by 49·4% (95% uncertainty interval [UI] 46·4–52·0). The TFR decreased from 4·7 livebirths (4·5–4·9) to 2·4 livebirths (2·2–2·5), and the ASFR of mothers aged 10–19 years decreased from 37 livebirths (34–40) to 22 livebirths (19–24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83·8 million people per year since 1985. The global population increased by 197·2% (193·3–200·8) since 1950, from 2·6 billion (2·5–2·6) to 7·6 billion (7·4–7·9) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2·0%; this rate then remained nearly constant until 1970 and then decreased to 1·1% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2·5% in 1963 to 0·7% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2·7%. The global average age increased from 26·6 years in 1950 to 32·1 years in 2017, and the proportion of the population that is of working age (age 15–64 years) increased from 59·9% to 65·3%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1·0 livebirths (95% UI 0·9–1·2) in Cyprus to a high of 7·1 livebirths (6·8–7·4) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0·08 livebirths (0·07–0·09) in South Korea to 2·4 livebirths (2·2–2·6) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0·3 livebirths (0·3–0·4) in Puerto Rico to a high of 3·1 livebirths (3·0–3·2) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2·0% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger. Interpretation: Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress

    Population and fertility by age and sex for 195 countries and territories, 1950-2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    BACKGROUND: Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. METHODS: We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10-54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10-14 years and 50-54 years was estimated from data on fertility in women aged 15-19 years and 45-49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories
    • 

    corecore