454 research outputs found

    Toward Understanding the Origin of Turbulence in Molecular Clouds: Small Scale Structures as Units of Dynamical Multi-Phase Interstellar Medium

    Full text link
    In order to investigate the origin of the interstellar turbulence, detailed observations in the CO J=1--0 and 3--2 lines have been carried out in an interacting region of a molecular cloud with an HII region. As a result, several 1,000 to 10,000 AU scale cloudlets with small velocity dispersion are detected, whose systemic velocities have a relatively large scatter of a few km/s. It is suggested that the cloud is composed of small-scale dense and cold structures and their overlapping effect makes it appear to be a turbulent entity as a whole. This picture strongly supports the two-phase model of turbulent medium driven by thermal instability proposed previously. On the surface of the present cloud, the turbulence is likely to be driven by thermal instability following ionization shock compression and UV irradiation. Those small scale structures with line width of ~ 0.6 km/s have a relatively high CO line ratio of J=3--2 to 1--0, 1 < R(3-2/1-0) < 2. The large velocity gradient analysis implies that the 0.6 km/s width component cloudlets have an average density of 10^{3-4} cm^{-3}, which is relatively high at cloud edges, but their masses are only < 0.05 M_{sun}.Comment: 12 pages, 9 figures. To be published in the Astrophysical Journa

    High-resolution mapping of in vivo genomic transcription factor binding sites using in situ DNase I footprinting and ChIP-seq

    Get PDF
    Accurate identification of the DNA-binding sites of transcription factors and other DNA-binding proteins on the genome is crucial to understanding their molecular interactions with DNA. Here, we describe a new method: Genome Footprinting by high-throughput sequencing (GeF-seq), which combines in vivo DNase I digestion of genomic DNA with ChIP coupled with high-throughput sequencing. We have determined the in vivo binding sites of a Bacillus subtilis global regulator, AbrB, using GeF-seq. This method shows that exact DNA-binding sequences, which were protected from in vivo DNase I digestion, were resolved at a comparable resolution to that achieved by in vitro DNase I footprinting, and this was simply attained without the necessity of prediction by peak-calling programs. Moreover, DNase I digestion of the bacterial nucleoid resolved the closely positioned AbrB-binding sites, which had previously appeared as one peak in ChAP-chip and ChAP-seq experiments. The high-resolution determination of AbrB-binding sites using GeF-seq enabled us to identify bipartite TGGNA motifs in 96% of the AbrB-binding sites. Interestingly, in a thousand binding sites with very low-binding intensities, single TGGNA motifs were also identified. Thus, GeF-seq is a powerful method to elucidate the molecular mechanism of target protein binding to its cognate DNA sequences

    A case of acute myocardial infarction during perioperative period of non-cardiac surgery in a patient with antiphospholipid syndrome and a history of coronary artery bypass surgery

    Get PDF
    AbstractA 65-year-old woman underwent coronary artery bypass surgery and was diagnosed with antiphospholipid syndrome (APS) at the same time in 1985. She was admitted to our hospital to undergo mastectomy for left breast cancer in 2012. She was put on intravenous infusion of heparin and stopped receiving both antiplatelet agents and warfarin. The operation was performed without complications, and antithrombotic therapy was restarted one day after the operation. On day 6 postoperative, she complained of sudden chest pain and on examination she was diagnosed with acute myocardial infarction. The culprit lesion was in a saphenous vein graft and coronary intervention was performed.<Learning objective: Antithrombotic therapy for patients with APS is complicated because of prolonged baseline activated partial thromboplastin time (aPTT). An effective perioperative antithrombotic therapy for APS patients who have a history of coronary artery disease and have undergone non-cardiac surgery has not yet been established. A safe strategy for such a therapy should therefore be discussed.

    Mixing in the Solar Nebula: Implications for Isotopic Heterogeneity and Large-Scale Transport of Refractory Grains

    Full text link
    The discovery of refractory grains amongst the particles collected from Comet 81P/Wild 2 by the Stardust spacecraft (Brownlee et al. 2006) provides the ground truth for large-scale transport of materials formed in high temperature regions close to the protosun outward to the comet-forming regions of the solar nebula. While accretion disk models driven by a generic turbulent viscosity have been invoked as a means to explain such large-scale transport, the detailed physics behind such an ``alpha'' viscosity remains unclear. We present here an alternative physical mechanism for large-scale transport in the solar nebula: gravitational torques associated with the transient spiral arms in a marginally gravitationally unstable disk, of the type that appears to be necessary to form gas giant planets. Three dimensional models are presented of the time evolution of self-gravitating disks, including radiative transfer and detailed equations of state, showing that small dust grains will be transported upstream and downstream (with respect to the mean inward flow of gas and dust being accreted by the central protostar) inside the disk on time scales of less than 1000 yr inside 10 AU. These models furthermore show that any initial spatial heterogeneities present (e.g., in short-lived isotopes such as 26Al) will be homogenized by disk mixing down to a level of ~10%, preserving the use of short-lived isotopes as accurate nebular chronometers, while simultaneously allowing for the spread of stable oxygen isotope ratios. This finite level of nebular spatial heterogeneity appears to be related to the coarse mixing achieved by spiral arms, with radial widths of order 1 AU, over time scales of ~1000 yrs.Comment: 22 pages, 10 figures. Earth & Planetary Science Letters, accepte

    Selection Effects on the Observed Redshift Dependence of GRB Jet Opening Angles

    Full text link
    Apparent redshift dependence of the jet opening angles (θj\theta_{\rm j}) of gamma-ray bursts (GRBs) is observed from current GRB sample. We investigate whether this dependence can be explained with instrumental selection effects and observational biases by a bootstrapping method. Assuming that (1) the GRB rate follows the star formation history and the cosmic metallicity history and (2) the intrinsic distributions of the jet-corrected luminosity (LγL_{\rm \gamma}) and θj\theta_{\rm j} are a Gaussian or a power-law function, we generate a mock {\em Swift}/BAT sample by considering various instrumental selection effects, including the flux threshold and the trigger probability of BAT, the probabilities of a GRB jet pointing to the instrument solid angle and the probability of redshift measurement. Our results well reproduce the observed θjz\theta_{\rm j}-z dependence. We find that in case of Lγθj2L_{\gamma}\propto \theta_{\rm j}^2 good consistency between the mock and observed samples can be obtained, indicating that both LγL_{\rm \gamma} and θj\theta_{\rm j} are degenerate for a flux-limited sample. The parameter set (Lγ,θj)=(4.9×1049erg s1, 0.054rad)(L_{\rm \gamma}, \theta_{\rm j})=(4.9\times 10^{49} \rm {erg\ s}^{-1},\ 0.054 {rad}) gives the best consistency for the current {\em Swift} GRB sample. Considering the beaming effect, the derived intrinsic local GRB rate accordingly is 2.85×1022.85\times 10^2 Gpc3^{-3} yr1^{-1}, inferring that 0.59\sim 0.59% of Type Ib/c SNe may be accompanied by a GRB.Comment: 25pages, 7 figures. ApJ in pres

    Observation of microstructure change during freeze-drying by in-situ X-ray Computed Tomography

    Full text link
    [EN] X-ray computed tomography technique was used to observe microstructure formation during freeze-drying. A specially designed vacuum freeze-drying stage was equipped at the X-ray CT stage, and the frozen and dried microstructures of dextrin solutions were successfully observed. It was confirmed that the many parts of the pore microstructures formed as a replica of the original ice microstructures, whereas some parts formed as a consequence of the dehydration dependent on the relaxation level of the glassy phases, suggesting that the post-freezing annealing is advantageous for avoiding quality loss that relates to the structural deformation of glassy matters.Nakagawa, K.; Tamiya, S.; Sakamoto, S.; Do, G.; Kono, S.; Ochiai, T. (2018). Observation of microstructure change during freeze-drying by in-situ X-ray Computed Tomography. En IDS 2018. 21st International Drying Symposium Proceedings. Editorial Universitat Politècnica de València. 935-942. https://doi.org/10.4995/IDS2018.2018.7642OCS93594

    Molecular Gas in NUclei of GAlaxies (NUGA) I.The counter-rotating LINER NGC4826

    Get PDF
    We present new high-resolution observations of the nucleus of the counter-rotating LINER NGC4826, made in the J=1-0 and J=2-1 lines of 12CO with the IRAM Plateau de Bure mm-interferometer(PdBI).The CO maps, which achieve 0.8''(16pc) resolution in the 2-1 line, fully resolve an inner molecular gas disk which is truncated at an outer radius of 700pc. The total molecular gas mass is distributed in a lopsided nuclear disk of 40pc radius and two one-arm spirals, which develop at different radii in the disk. The distribution and kinematics of molecular gas in the inner 1kpc of NGC4826 show the prevalence of different types of m=1 perturbations in the gas. Although dominated by rotation, the gas kinematics are perturbed by streaming motions related to the m=1 instabilities. The non-circular motions associated with the inner m=1 perturbations agree qualitatively with the pattern expected for a trailing wave developed outside corotation ('fast' wave). In contrast, the streaming motions in the outer m=1 spiral are better explained by a 'slow' wave. A paradoxical consequence is that the inner m=1 perturbations would not favour AGN feeding. An independent confirmation that the AGN is not being generously fueled at present is found in the low values of the gravitational torques exerted by the stellar potential for R<530pc. The distribution of star formation in the disk of NGC4826 is also strongly asymmetrical. Massive star formation is still vigorous, fed by the significant molecular gas reservoir at R<700pc. There is supporting evidence for a recent large mass inflow episode in NGC4826. These observations have been made in the context of the NUclei of GAlaxies (NUGA) project, aimed at the study of the different mechanisms for gas fueling of AGN.Comment: A&A, 2003, Paper accepted (04/06/03). For a full-resolution version of this paper see http://www.oan.es/preprint

    Cosmochemical Consequences of Particle Trajectories During FU Orionis Outbursts by the Early Sun

    Full text link
    The solar nebula is thought to have undergone a number of episodes of FU Orionis outbursts during its early evolution. We present here the first calculations of the trajectories of particles in a marginally gravitationally unstable solar nebula during an FU Orionis outburst, which show that 0.1 to 10 cm-sized particles traverse radial distances of 10 AU or more, inward and outward, in less than 200 yrs, exposing the particles to temperatures from \sim 60 K to \sim 1500 K. Such trajectories can thus account for the discovery of refractory particles in comets. Refractory particles should acquire Wark-Lovering-like rims as they leave the highest temperature regions of the disk, and these rims should have significant variations in their stable oxygen isotope ratios. Particles are likely to be heavily modified or destroyed if they pass within 1 AU of the Sun, and so are only likely to survive if they formed in the final few FU Orionis outbursts, or were transported to the outer reaches of the solar system. Calcium, aluminum-rich inclusions (CAIs) from primitive meteorites are the oldest known solar system objects and have a very narrow age range. Most CAIs may have formed at the end of the FU Orionis outbursts phase, with an age range reflecting the period between the last few outbursts.Comment: 32 pages, 4 figures, in press, EPS

    Simulations on High-z Long Gamma-Ray Burst Rate

    Full text link
    Since the launch of Swift satellite, the detections of high-z (z>4) long gamma-ray bursts (LGRBs) have been rapidly growing, even approaching the very early Universe (the record holder currently is z=8.3). The observed high-z LGRB rate shows significant excess over that estimated from the star formation history. We investigate what may be responsible for this high productivity of GRBs at high-z through Monte Carlo simulations, with effective Swif/BAT trigger and redshift detection probabilities based on current Swift/BAT sample and CGRO/BATSE LGRB sample. We compare our simulations to the Swift observations via log N-log P, peak luminosity (L) and redshift distributions. In the case that LGRB rate is purely proportional to the star formation rate (SFR), our simulations poorly reproduce the LGRB rate at z>4, although the simulated log N-log P distribution is in good agreement with the observed one. Assuming that the excess of high-z GRB rate is due to the cosmic metallicity evolution or unknown LGRB rate increase parameterized as (1+z)^delta, we find that although the two scenarios alone can improve the consistency between our simulations and observations, incorporation of them gives much better consistency. We get 0.2<epsilon<0.6 and delta<0.6, where epsilon is the metallicity threshold for the production of LGRBs. The best consistency is obtained with a parameter set (epsilon, delta)=(~0.4, ~0.4), and BAT might trigger a few LGRBs at z~14. With increasing detections of GRBs at z>4 (~15% of GRBs in current Swift LGRB sample based on our simulations), a window for very early Universe is opening by Swift and up-coming SVOM missions.Comment: 9 pages, including 8 figures and 1 table, one more figure added. Accepted for publication in MNRA

    Theory of Star Formation

    Full text link
    We review current understanding of star formation, outlining an overall theoretical framework and the observations that motivate it. A conception of star formation has emerged in which turbulence plays a dual role, both creating overdensities to initiate gravitational contraction or collapse, and countering the effects of gravity in these overdense regions. The key dynamical processes involved in star formation -- turbulence, magnetic fields, and self-gravity -- are highly nonlinear and multidimensional. Physical arguments are used to identify and explain the features and scalings involved in star formation, and results from numerical simulations are used to quantify these effects. We divide star formation into large-scale and small-scale regimes and review each in turn. Large scales range from galaxies to giant molecular clouds (GMCs) and their substructures. Important problems include how GMCs form and evolve, what determines the star formation rate (SFR), and what determines the initial mass function (IMF). Small scales range from dense cores to the protostellar systems they beget. We discuss formation of both low- and high-mass stars, including ongoing accretion. The development of winds and outflows is increasingly well understood, as are the mechanisms governing angular momentum transport in disks. Although outstanding questions remain, the framework is now in place to build a comprehensive theory of star formation that will be tested by the next generation of telescopes.Comment: 120 pages, to appear in ARAA. No changes from v1 text; permission statement adde
    corecore