207 research outputs found

    THE SEISMIC BEHAVIOR OF BURIED SEABED WALLS IN LIQUEFACTION SOIL

    Get PDF
    The present study aimed to investigate the seismic behavior of enclosed seawater walls, the buried site of which lies in liquefaction soil. An experimental specimen was manufactured and tested on the seismic table, and a numerical study was also modeled in the ABAQUS software based on the experimental outcomes. In both the experimental and numerical studies, a susceptible liquefaction layer around the root of the wall was considered due to the root lean soil leakage and large lateral pressure, and the soil behind the root caused the failure of the buried section. According to the results, the lateral movement significantly decreased due to the backing effect of this layer on the buried section of the wall. Furthermore, an active wedge was formed from the buried side to the back of the containment, and the braces were overwhelming due to the presence of the locks in the wedge and their movement along with the wedge. The displacement of the crown and foot of the wall decreased with the increased base acceleration and higher frequency of the entrance movement

    A comparative experimental investigation of high-temperature effect on fibre concrete and high strength concrete using UT and CM methods

    Get PDF
    In this paper, a 28-day compressive strength test has been performed on samples including normal fibre concrete and high-strength concrete. The ultrasonic test (UT) as a non-destructive and compression machine (CM) as a destructive test were applied, and the results were compared. To investigate the effect of temperature, the samples were subjected to 200, 400, 600, 800, 1000, and 1200 degrees Celsius and the exposure time was equal to 30, 45, 60, 90, 120, and 180 minutes. Based on the results, it was observed that the minimum error observed between the UT and CM tests was 2.9 % and the maximum error between the two methods was 10.9 %, which shows the high accuracy of the ultrasonic testing method in determining the specimen’s strength. The average probable error of the method is determined to be around 6.8 %.Based on the results of the average decrease in compressive strength versus the heat exposure time, it is observed that the trend of changes and decrease in resistance over time for both types of tests is almost the same and has a negligible difference. At the end of 180 minutes of exposure, the resistance ratio for the ultrasonic test is 69.8 %, and 71.1 % for the compression machine. Furthermore, according to the average reduction in compressive strength due to heat exposure time, it has been observed that the results of the UT and UM tests have slight numerical differences, however, the trend of changes and reduction in resistance over time for both types of tests is almost the same. Finally, the accuracy of the UT in determining the compressive strength of specimens at high temperatures is fully confirmed

    Analysis of RC Deep Beams Considering the Shear Deformations and Bar-concrete Interaction

    Get PDF
    In this paper, reinforced concrete (RC) deep beams (DBs) have been analyzed numerically and a new approach is proposed to the nonlinear numerical modeling of such structural members. The effect of shear deformations and the interaction between reinforcing steel bar and concrete are considered in modeling and analysis. In order to consider the effect of shear deformations, the Timoshenko beam theory has been applied to formulate the analysis method. In the modeling, the RC DB is divided into several sub-elements which are composed of concrete and reinforcing steel bars. Individual degrees of freedom have been assigned to each reinforcing steel bar. Thus, each reinforcing steel bar is able to slip relative to its surrounding concrete and the bond effect is simulated by nonlinear springs. To consider the interaction between reinforcing steel bar and concrete, the concrete segment acts as a beam element, and each reinforcing steel bar acts as a truss element. The reliability of this method has been confirmed by comparing the obtained results from the numerical analysis and the results of the experimental pushover test

    Stress as a risk factor for noncompliance with treatment regimens in patients with diabetes and hypertension

    Get PDF
    BACKGROUND: We have assessed the role of stress on compliance of patients with diabetes mellitus (DM) and hypertension (HTN) with taking prescribed medications and following dietary and exercise regimens. METHODS: A total of 9544 individuals more than 19 years of age were selected from three counties in central Iran. The presence of DM and HTN were asked from participants. We defined treatment adherence (compliance) based on agreement of individual�s self-report behavior with recommendations from a physician. RESULTS: Awareness about DM and HTN was 82.6 and 49.9, respectively. Multivariate analysis showed that odds ratio (OR) of high to low stress level was lower than one for both �usage of medication� and �following exercise regimen� in diabetics even after adjustment for either �age and sex� or �age, sex and education�. In hypertensive patients, OR of high to low stress level was lower than one for �usage of medication� even after adjustment for either �age and sex� or �age, sex and education� and also lower than one for �following exercise regimen� only as crude index. CONCLUSION: Cases with higher stress level had lower compliance for accepting either medication or exercise as a treatment option for their DM or HTN. © 2016, Isfahan University of Medical Sciences(IUMS). All rights reserved

    Tillage management effects on pesticide fate in soils. A review

    Full text link

    The global distribution of lymphatic filariasis, 2000–18: a geospatial analysis

    Get PDF
    Background Lymphatic filariasis is a neglected tropical disease that can cause permanent disability through disruption of the lymphatic system. This disease is caused by parasitic filarial worms that are transmitted by mosquitos. Mass drug administration (MDA) of antihelmintics is recommended by WHO to eliminate lymphatic filariasis as a public health problem. This study aims to produce the first geospatial estimates of the global prevalence of lymphatic filariasis infection over time, to quantify progress towards elimination, and to identify geographical variation in distribution of infection. Methods A global dataset of georeferenced surveyed locations was used to model annual 2000–18 lymphatic filariasis prevalence for 73 current or previously endemic countries. We applied Bayesian model-based geostatistics and time series methods to generate spatially continuous estimates of global all-age 2000–18 prevalence of lymphatic filariasis infection mapped at a resolution of 5 km2 and aggregated to estimate total number of individuals infected. Findings We used 14 927 datapoints to fit the geospatial models. An estimated 199 million total individuals (95% uncertainty interval 174–234 million) worldwide were infected with lymphatic filariasis in 2000, with totals for WHO regions ranging from 3·1 million (1·6–5·7 million) in the region of the Americas to 107 million (91–134 million) in the South-East Asia region. By 2018, an estimated 51 million individuals (43–63 million) were infected. Broad declines in prevalence are observed globally, but focal areas in Africa and southeast Asia remain less likely to have attained infection prevalence thresholds proposed to achieve local elimination. Interpretation Although the prevalence of lymphatic filariasis infection has declined since 2000, MDA is still necessary across large populations in Africa and Asia. Our mapped estimates can be used to identify areas where the probability of meeting infection thresholds is low, and when coupled with large uncertainty in the predictions, indicate additional data collection or intervention might be warranted before MDA programmes cease

    Predicting the environmental suitability for onchocerciasis in Africa as an aid to elimination planning

    Get PDF
    Recent evidence suggests that, in some foci, elimination of onchocerciasis from Africa may be feasible with mass drug administration (MDA) of ivermectin. To achieve continental elimination of transmission, mapping surveys will need to be conducted across all implementation units (IUs) for which endemicity status is currently unknown. Using boosted regression tree models with optimised hyperparameter selection, we estimated environmental suitability for onchocerciasis at the 5 × 5-km resolution across Africa. In order to classify IUs that include locations that are environmentally suitable, we used receiver operating characteristic (ROC) analysis to identify an optimal threshold for suitability concordant with locations where onchocerciasis has been previously detected. This threshold value was then used to classify IUs (more suitable or less suitable) based on the location within the IU with the largest mean prediction. Mean estimates of environmental suitability suggest large areas across West and Central Africa, as well as focal areas of East Africa, are suitable for onchocerciasis transmission, consistent with the presence of current control and elimination of transmission efforts. The ROC analysis identified a mean environmental suitability index of 0.71 as a threshold to classify based on the location with the largest mean prediction within the IU. Of the IUs considered for mapping surveys, 50.2% exceed this threshold for suitability in at least one 5×5-km location. The formidable scale of data collection required to map onchocerciasis endemicity across the African continent presents an opportunity to use spatial data to identify areas likely to be suitable for onchocerciasis transmission. National onchocerciasis elimination programmes may wish to consider prioritising these IUs for mapping surveys as human resources, laboratory capacity, and programmatic schedules may constrain survey implementation, and possibly delaying MDA initiation in areas that would ultimately qualify

    Mapping development and health effects of cooking with solid fuels in low-income and middle-income countries, 2000–18: a geospatial modelling study

    Get PDF
    Background: More than 3 billion people do not have access to clean energy and primarily use solid fuels to cook. Use of solid fuels generates household air pollution, which was associated with more than 2 million deaths in 2019. Although local patterns in cooking vary systematically, subnational trends in use of solid fuels have yet to be comprehensively analysed. We estimated the prevalence of solid-fuel use with high spatial resolution to explore subnational inequalities, assess local progress, and assess the effects on health in low-income and middle-income countries (LMICs) without universal access to clean fuels. Methods: We did a geospatial modelling study to map the prevalence of solid-fuel use for cooking at a 5 km × 5 km resolution in 98 LMICs based on 2·1 million household observations of the primary cooking fuel used from 663 population-based household surveys over the years 2000 to 2018. We use observed temporal patterns to forecast household air pollution in 2030 and to assess the probability of attaining the Sustainable Development Goal (SDG) target indicator for clean cooking. We aligned our estimates of household air pollution to geospatial estimates of ambient air pollution to establish the risk transition occurring in LMICs. Finally, we quantified the effect of residual primary solid-fuel use for cooking on child health by doing a counterfactual risk assessment to estimate the proportion of deaths from lower respiratory tract infections in children younger than 5 years that could be associated with household air pollution. Findings: Although primary reliance on solid-fuel use for cooking has declined globally, it remains widespread. 593 million people live in districts where the prevalence of solid-fuel use for cooking exceeds 95%. 66% of people in LMICs live in districts that are not on track to meet the SDG target for universal access to clean energy by 2030. Household air pollution continues to be a major contributor to particulate exposure in LMICs, and rising ambient air pollution is undermining potential gains from reductions in the prevalence of solid-fuel use for cooking in many countries. We estimated that, in 2018, 205 000 (95% uncertainty interval 147 000–257 000) children younger than 5 years died from lower respiratory tract infections that could be attributed to household air pollution. Interpretation: Efforts to accelerate the adoption of clean cooking fuels need to be substantially increased and recalibrated to account for subnational inequalities, because there are substantial opportunities to improve air quality and avert child mortality associated with household air pollution. Funding: Bill & Melinda Gates Foundation

    Mapping development and health effects of cooking with solid fuels in low-income and middle-income countries, 2000-18 : a geospatial modelling study

    Get PDF
    Background More than 3 billion people do not have access to clean energy and primarily use solid fuels to cook. Use of solid fuels generates household air pollution, which was associated with more than 2 million deaths in 2019. Although local patterns in cooking vary systematically, subnational trends in use of solid fuels have yet to be comprehensively analysed. We estimated the prevalence of solid-fuel use with high spatial resolution to explore subnational inequalities, assess local progress, and assess the effects on health in low-income and middle-income countries (LMICs) without universal access to clean fuels.Methods We did a geospatial modelling study to map the prevalence of solid-fuel use for cooking at a 5 km x 5 km resolution in 98 LMICs based on 2.1 million household observations of the primary cooking fuel used from 663 population-based household surveys over the years 2000 to 2018. We use observed temporal patterns to forecast household air pollution in 2030 and to assess the probability of attaining the Sustainable Development Goal (SDG) target indicator for clean cooking. We aligned our estimates of household air pollution to geospatial estimates of ambient air pollution to establish the risk transition occurring in LMICs. Finally, we quantified the effect of residual primary solid-fuel use for cooking on child health by doing a counterfactual risk assessment to estimate the proportion of deaths from lower respiratory tract infections in children younger than 5 years that could be associated with household air pollution.Findings Although primary reliance on solid-fuel use for cooking has declined globally, it remains widespread. 593 million people live in districts where the prevalence of solid-fuel use for cooking exceeds 95%. 66% of people in LMICs live in districts that are not on track to meet the SDG target for universal access to clean energy by 2030. Household air pollution continues to be a major contributor to particulate exposure in LMICs, and rising ambient air pollution is undermining potential gains from reductions in the prevalence of solid-fuel use for cooking in many countries. We estimated that, in 2018, 205000 (95% uncertainty interval 147000-257000) children younger than 5 years died from lower respiratory tract infections that could be attributed to household air pollution.Interpretation Efforts to accelerate the adoption of clean cooking fuels need to be substantially increased and recalibrated to account for subnational inequalities, because there are substantial opportunities to improve air quality and avert child mortality associated with household air pollution. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Global burden of chronic respiratory diseases and risk factors, 1990–2019: an update from the Global Burden of Disease Study 2019

    Get PDF
    Background: Updated data on chronic respiratory diseases (CRDs) are vital in their prevention, control, and treatment in the path to achieving the third UN Sustainable Development Goals (SDGs), a one-third reduction in premature mortality from non-communicable diseases by 2030. We provided global, regional, and national estimates of the burden of CRDs and their attributable risks from 1990 to 2019. Methods: Using data from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we estimated mortality, years lived with disability, years of life lost, disability-adjusted life years (DALYs), prevalence, and incidence of CRDs, i.e. chronic obstructive pulmonary disease (COPD), asthma, pneumoconiosis, interstitial lung disease and pulmonary sarcoidosis, and other CRDs, from 1990 to 2019 by sex, age, region, and Socio-demographic Index (SDI) in 204 countries and territories. Deaths and DALYs from CRDs attributable to each risk factor were estimated according to relative risks, risk exposure, and the theoretical minimum risk exposure level input. Findings: In 2019, CRDs were the third leading cause of death responsible for 4.0 million deaths (95% uncertainty interval 3.6–4.3) with a prevalence of 454.6 million cases (417.4–499.1) globally. While the total deaths and prevalence of CRDs have increased by 28.5% and 39.8%, the age-standardised rates have dropped by 41.7% and 16.9% from 1990 to 2019, respectively. COPD, with 212.3 million (200.4–225.1) prevalent cases, was the primary cause of deaths from CRDs, accounting for 3.3 million (2.9–3.6) deaths. With 262.4 million (224.1–309.5) prevalent cases, asthma had the highest prevalence among CRDs. The age-standardised rates of all burden measures of COPD, asthma, and pneumoconiosis have reduced globally from 1990 to 2019. Nevertheless, the age-standardised rates of incidence and prevalence of interstitial lung disease and pulmonary sarcoidosis have increased throughout this period. Low- and low-middle SDI countries had the highest age-standardised death and DALYs rates while the high SDI quintile had the highest prevalence rate of CRDs. The highest deaths and DALYs from CRDs were attributed to smoking globally, followed by air pollution and occupational risks. Non-optimal temperature and high body-mass index were additional risk factors for COPD and asthma, respectively. Interpretation: Albeit the age-standardised prevalence, death, and DALYs rates of CRDs have decreased, they still cause a substantial burden and deaths worldwide. The high death and DALYs rates in low and low-middle SDI countries highlights the urgent need for improved preventive, diagnostic, and therapeutic measures. Global strategies for tobacco control, enhancing air quality, reducing occupational hazards, and fostering clean cooking fuels are crucial steps in reducing the burden of CRDs, especially in low- and lower-middle income countries
    corecore