21 research outputs found

    The COVID-19 pandemic in Nepal: Emerging evidence on the effectiveness of action by, and cooperation between, different levels of government in a federal system

    Get PDF
    A new coronavirus disease (COVID-19) caused by a novel pathogen (SARS-CoV-2) spread rapidly around the world in the early months of 2020, and was declared a pandemic by the World Health Organization (WHO) on 11 March. COVID-19 has, and continues to have, large implications for individuals, societies, and for national health systems across the globe. Due to its novelty and impact, it has challenged all health care systems where the virus has taken hold. The ways in which governments and health systems have responded have varied widely across the world. In the case of Nepal, the pandemic represented a major test for the newly decentralised health system, created as a result of the implementation of the 2015 federal constitution. This paper, which forms a part of our large on-going study of the decentralisation of the health system in the country, presents some of the early evidence on the effectiveness of the actions taken by Federal, Provincial and Local Governments and the levels of cooperation and coordination between them

    Mapping 123 million neonatal, infant and child deaths between 2000 and 2017

    Get PDF
    Since 2000, many countries have achieved considerable success in improving child survival, but localized progress remains unclear. To inform efforts towards United Nations Sustainable Development Goal 3.2—to end preventable child deaths by 2030—we need consistently estimated data at the subnational level regarding child mortality rates and trends. Here we quantified, for the period 2000–2017, the subnational variation in mortality rates and number of deaths of neonates, infants and children under 5 years of age within 99 low- and middle-income countries using a geostatistical survival model. We estimated that 32% of children under 5 in these countries lived in districts that had attained rates of 25 or fewer child deaths per 1,000 live births by 2017, and that 58% of child deaths between 2000 and 2017 in these countries could have been averted in the absence of geographical inequality. This study enables the identification of high-mortality clusters, patterns of progress and geographical inequalities to inform appropriate investments and implementations that will help to improve the health of all populations

    Mapping geographical inequalities in access to drinking water and sanitation facilities in low-income and middle-income countries, 2000-17

    Get PDF
    Background: Universal access to safe drinking water and sanitation facilities is an essential human right, recognised in the Sustainable Development Goals as crucial for preventing disease and improving human wellbeing. Comprehensive, high-resolution estimates are important to inform progress towards achieving this goal. We aimed to produce high-resolution geospatial estimates of access to drinking water and sanitation facilities. Methods: We used a Bayesian geostatistical model and data from 600 sources across more than 88 low-income and middle-income countries (LMICs) to estimate access to drinking water and sanitation facilities on continuous continent-wide surfaces from 2000 to 2017, and aggregated results to policy-relevant administrative units. We estimated mutually exclusive and collectively exhaustive subcategories of facilities for drinking water (piped water on or off premises, other improved facilities, unimproved, and surface water) and sanitation facilities (septic or sewer sanitation, other improved, unimproved, and open defecation) with use of ordinal regression. We also estimated the number of diarrhoeal deaths in children younger than 5 years attributed to unsafe facilities and estimated deaths that were averted by increased access to safe facilities in 2017, and analysed geographical inequality in access within LMICs. Findings: Across LMICs, access to both piped water and improved water overall increased between 2000 and 2017, with progress varying spatially. For piped water, the safest water facility type, access increased from 40·0% (95% uncertainty interval [UI] 39·4–40·7) to 50·3% (50·0–50·5), but was lowest in sub-Saharan Africa, where access to piped water was mostly concentrated in urban centres. Access to both sewer or septic sanitation and improved sanitation overall also increased across all LMICs during the study period. For sewer or septic sanitation, access was 46·3% (95% UI 46·1–46·5) in 2017, compared with 28·7% (28·5–29·0) in 2000. Although some units improved access to the safest drinking water or sanitation facilities since 2000, a large absolute number of people continued to not have access in several units with high access to such facilities (>80%) in 2017. More than 253 000 people did not have access to sewer or septic sanitation facilities in the city of Harare, Zimbabwe, despite 88·6% (95% UI 87·2–89·7) access overall. Many units were able to transition from the least safe facilities in 2000 to safe facilities by 2017; for units in which populations primarily practised open defecation in 2000, 686 (95% UI 664–711) of the 1830 (1797–1863) units transitioned to the use of improved sanitation. Geographical disparities in access to improved water across units decreased in 76·1% (95% UI 71·6–80·7) of countries from 2000 to 2017, and in 53·9% (50·6–59·6) of countries for access to improved sanitation, but remained evident subnationally in most countries in 2017. Interpretation: Our estimates, combined with geospatial trends in diarrhoeal burden, identify where efforts to increase access to safe drinking water and sanitation facilities are most needed. By highlighting areas with successful approaches or in need of targeted interventions, our estimates can enable precision public health to effectively progress towards universal access to safe water and sanitation

    Masquerading in the name of world peace: An analysis of Sunil Sigdel’s painting “Peace Owners II”

    No full text
    AbstractThis article analyses Sunil Sigdel’s painting “Peace Owners II,” a portrayal of three major political leaders of our time; Donald J. Trump, Vladimir Putin, and Kim Jong Un, from the holistic level of structure, meaning, and discourse. To interpret the painting, it utilizes Erwin Panofsky’s “art interpretation theory,” which examines visual art in pre-iconographical, iconographical, and iconological description, in conversation with visual rhetorics. This article, keeping Buddhist philosophy at the center, shows that Sigdel’s painting is a medley of the eastern tradition of thangka-paubha art and the notion of global politics and foregrounds the contradictions between the real peace preached by Gautam Buddha and shallow peace advocated by the modern world leaders. The allegory of political leaders depicts a contradiction between Buddha’s notion on peace and that of the Buddha-like demigod of our time who are disguisedly selling the false idea of a peace process throughout the world. The painting also contends that the failure of both political ideologies—democratic essence and communist values—in global politics is the reason for the juxtaposition of Buddha’s concept of peace and profit-oriented intentionally operationalized peace by so-called peace owners

    A Novel Approach for the Development of Low-Cost Polymeric Thin-Film Nanocomposite Membranes for the Biomacromolecule Separation

    No full text
    The separation of biomacromolecules, mainly proteins, plays a significant role in the pharmaceutical and food industries. Among the membranes’ techniques, thin-film nanocomposite nanofiltration membranes are the best choice due to their high energy efficiency, excellent productivity, cost-effective and tuneable properties that have captured the attention of the efficient separation of biomacromolecules, especially from the industrial perspective. The present work directs the efficient separation study of proteins, namely, lysozyme, trypsin, pepsin, bovine serum albumin (BSA), and cephalexin, using a thin-film nanocomposite membrane integrated with Arg-MMT (arginine-montmorillonite) clay nanoparticles. The surface morphology and cross-section images of the TFN membranes were studied using a field emission scanning electron microscope (FE-SEM) and a high-resolution transmission electron microscope (HR-TEM). The thermal stability and hydrophilicity of the membranes were examined using thermogravimetric analysis (TGA) and contact angle, respectively. The surface chemistry of the selective layer has different functional groups that were analyzed using FTIR spectroscopy. The performance of the membranes was studied at different trans-membrane pressures and permeation times. The effect of monomer concentration on the separation performance of the membranes was also studied at different permeation times. The membranes’ antibacterial activity was evaluated using the Muller–Hinton disk diffusion method using gram-negative Escherichia coli (E. coli) and gram-positive Staphylococcus aureus (S. aureus) bacteria. The highest rejection was achieved for BSA up to 98.92 ± 1%, and the highest permeation was obtained against lysozyme feed solution up to 26 L m–2 h–1 at 5 bar pressure. The membrane also illustrated excellent rejection of cephalexin antibiotics with a rejection of 98.17 ± 1.75% and a permeation flux of 26.14 L m–2 h–1. The antifouling study performed for the membranes exhibited a flux recovery ratio of 86.48%. The fabricated thin-film nanocomposite membrane demonstrated a good alternative for the separation of biomacromolecules and has the potential to be used in different sectors of industry, especially the pharmaceutical and food industry

    Development of Antifouling Thin-Film Composite/Nanocomposite Membranes for Removal of Phosphate and Malachite Green Dye

    No full text
    Nowadays polymer-based thin film nanocomposite (TFN) membrane technologies are showing key interest to improve the separation properties. TFN membranes are well known in diverse fields but developing highly improved TFN membranes for the removal of low concentration solutions is the main challenge for the researchers. Application of functional nanomaterials, incorporated in TFN membranes provides better performance as permeance and selectivity. The polymer membrane-based separation process plays an important role in the chemical industry for the isolation of products and recovery of different important types of reactants. Due to the reduction in investment, less operating costs and safety issues membrane methods are mainly used for the separation process. Membranes do good separation of dyes and ions, yet their separation efficiency is challenged when the impurity is in low concentration. Herewith, we have developed, UiO-66-NH2 incorporated TFN membranes through interfacial polymerization between piperazine (PIP) and trimesoyl chloride (TMC) for separating malachite green dye and phosphate from water in their low concentration. A comparative study between thin-film composite (TFC) and TFN has been carried out to comprehend the benefit of loading nanoparticles. To provide mechanical strength to the polyamide layer ultra-porous polysulfone support was made through phase inversion. As a result, outstanding separation values of malachite green (MG) 91.90 ± 3% rejection with 13.32 ± 0.6 Lm−2h−1 flux and phosphate 78.36 ± 3% rejection with 22.22 ± 1.1 Lm−2h−1 flux by TFN membrane were obtained. The antifouling tendency of the membranes was examined by using bovine serum albumin (BSA)-mixed feed and deionized water, the study showed a good ~84% antifouling tendency of TFN membrane with a small ~14% irreversible fouling. Membrane’s antibacterial test against E. coli. and S. aureus. also revealed that the TFN membrane possesses antibacterial activity as well. We believe that the present work is an approach to obtaining good results from the membranes under tricky conditions

    Evaluation of an Antimicrobial Stewardship Program for Wound and Burn Care in Three Hospitals in Nepal

    No full text
    Antimicrobial stewardship (AMS) programs can decrease non-optimal use of antibiotics in hospital settings. There are limited data on AMS programs in burn and chronic wound centers in low- and middle-income countries (LMIC). A post-prescription review and feedback (PPRF) program was implemented in three hospitals in Nepal with a focus on wound and burn care. A total of 241 baseline and 236 post-intervention patient chart data were collected from three hospitals. There was a significant decrease in utilizing days of therapy per 1000 patient days (DOT/1000 PD) of penicillin (p = 0.02), aminoglycoside (p < 0.001), and cephalosporin (p = 0.04). Increases in DOT/1000 PD at post-intervention were significant for metronidazole (p < 0.001), quinolone (p = 0.01), and other antibiotics (p < 0.001). Changes in use of antibiotics varied across hospitals, e.g., cephalosporin use decreased significantly at Kirtipur Hospital (p < 0.001) and Pokhara Academy of Health Sciences (p = 0.02), but not at Kathmandu Model Hospital (p = 0.59). An independent review conducted by infectious disease specialists at the Henry Ford Health System revealed significant changes in antibiotic prescribing practices both overall and by hospital. There was a decrease in mean number of intravenous antibiotic days between baseline (10.1 (SD 8.8)) and post-intervention (8.8 (SD 6.5)) (t = 3.56; p < 0.001), but no difference for oral antibiotics. Compared to baseline, over the 6-month post-intervention period, we found an increase in justified use of antibiotics (p < 0.001), de-escalation (p < 0.001), accurate documentation (p < 0.001), and adherence to the study antibiotic prescribing guidelines at 72 h (p < 0.001) and after diagnoses (p < 0.001). The evaluation data presented provide evidence that PPRF training and program implementation can contribute to hospital-based antibiotic stewardship for wound and burn care in Nepal

    Evaluation of an Antimicrobial Stewardship Program for Wound and Burn Care in Three Hospitals in Nepal

    No full text
    Antimicrobial stewardship (AMS) programs can decrease non-optimal use of antibiotics in hospital settings. There are limited data on AMS programs in burn and chronic wound centers in low- and middle-income countries (LMIC). A post-prescription review and feedback (PPRF) program was implemented in three hospitals in Nepal with a focus on wound and burn care. A total of 241 baseline and 236 post-intervention patient chart data were collected from three hospitals. There was a significant decrease in utilizing days of therapy per 1000 patient days (DOT/1000 PD) of penicillin (p = 0.02), aminoglycoside (p \u3c 0.001), and cephalosporin (p = 0.04). Increases in DOT/1000 PD at post-intervention were significant for metronidazole (p \u3c 0.001), quinolone (p = 0.01), and other antibiotics (p \u3c 0.001). Changes in use of antibiotics varied across hospitals, e.g., cephalosporin use decreased significantly at Kirtipur Hospital (p \u3c 0.001) and Pokhara Academy of Health Sciences (p = 0.02), but not at Kathmandu Model Hospital (p = 0.59). An independent review conducted by infectious disease specialists at the Henry Ford Health System revealed significant changes in antibiotic prescribing practices both overall and by hospital. There was a decrease in mean number of intravenous antibiotic days between baseline (10.1 (SD 8.8)) and post-intervention (8.8 (SD 6.5)) (t = 3.56; p \u3c 0.001), but no difference for oral antibiotics. Compared to baseline, over the 6-month post-intervention period, we found an increase in justified use of antibiotics (p \u3c 0.001), de-escalation (p \u3c 0.001), accurate documentation (p \u3c 0.001), and adherence to the study antibiotic prescribing guidelines at 72 h (p \u3c 0.001) and after diagnoses (p \u3c 0.001). The evaluation data presented provide evidence that PPRF training and program implementation can contribute to hospital-based antibiotic stewardship for wound and burn care in Nepal
    corecore