146 research outputs found

    p63 Promotes Cell Survival through Fatty Acid Synthase

    Get PDF
    There is increasing evidence that p63, and specifically ΔNp63, plays a central role in both development and tumorigenesis by promoting epithelial cell survival. However, few studies have addressed the molecular mechanisms through which such important function is exerted. Fatty acid synthase (FASN), a key enzyme that synthesizes long-chain fatty acids and is involved in both embryogenesis and cancer, has been recently proposed as a direct target of p53 family members, including p63 and p73. Here we show that knockdown of either total or ΔN-specific p63 isoforms in squamous cell carcinoma (SCC9) or immortalized prostate epithelial (iPrEC) cells caused a decrease in cell viability by inducing apoptosis without affecting the cell cycle. p63 silencing significantly reduced both the expression and the activity of FASN. Importantly, stable overexpression of either FASN or myristoylated AKT (myr-AKT) was able to partially rescue cells from cell death induced by p63 silencing. FASN induced AKT phosphorylation and a significant reduction in cell viability was observed when FASN-overexpressing SCC9 cells were treated with an AKT inhibitor after p63 knockdown, indicating that AKT plays a major role in FASN-mediated survival. Activated AKT did not cause any alteration in the FASN protein levels but induced its activity, suggesting that the rescue from apoptosis documented in the p63-silenced cells expressing myr-AKT cells may be partially mediated by FASN. Finally, we demonstrated that p63 and FASN expression are positively associated in clinical squamous cell carcinoma samples as well as in the developing prostate. Taken together, our findings demonstrate that FASN is a functionally relevant target of p63 and is required for mediating its pro-survival effects

    Targeted Proximal Tubule Injury Triggers Interstitial Fibrosis and Glomerulosclerosis

    Get PDF
    Chronic kidney disease (CKD) remains one of the leading causes of death in the developed world and acute kidney injury (AKI) is now recognized as a major risk factor in its development. Understanding the factors leading to CKD after acute injury are limited by current animal models of AKI which concurrently target various kidney cell types such as epithelial, endothelial and inflammatory cells. Here we developed a mouse model of kidney injury using the Six2-Cre-LoxP technology to selectively activate expression of the simian diphtheria toxin receptor in renal epithelia derived from the metanephric mesenchyme. By adjusting the timing and dose of diphtheria toxin a highly selective model of tubular injury was created to define the acute and chronic consequences of isolated epithelial injury. The diphtheria toxin-induced sublethal tubular epithelial injury was confined to the S1 and S2 segments of the proximal tubule rather than being widespread in the metanephric mesenchyme derived epithelial lineage. Acute injury was promptly followed by inflammatory cell infiltration and robust tubular cell proliferation leading to complete recovery after a single toxin insult. In striking contrast, three insults to renal epithelial cells at one week intervals resulted in maladaptive repair with interstitial capillary loss, fibrosis and glomerulosclerosis which was highly correlated with the degree of interstitial fibrosis. Thus, selective epithelial injury can drive the formation of interstitial fibrosis, capillary rarefaction and potentially glomerulosclerosis, substantiating a direct role for damaged tubule epithelium in the pathogenesis of CKD

    Reference intervals for urinary renal injury biomarkers KIM-1 and NGAL in healthy children

    Get PDF
    Aim: The aim of this study was to establish reference intervals in healthy children for two novel urinary biomarkers of acute kidney injury, kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL). Materials & Methods: Urinary biomarkers were determined in samples from children in the UK (n = 120) and the USA (n = 171) using both Meso Scale Discovery (MSD) and Luminex-based analytical approaches. Results: 95% reference intervals for each biomarker in each cohort are presented and stratified by sex or ethnicity where necessary, and age-related variability is explored using quantile regression. We identified consistently higher NGAL concentrations in females than males (p < 0.0001), and lower KIM-1 concentrations in African–Americans than Caucasians (p = 0.02). KIM-1 demonstrated diurnal variation, with higher concentrations in the morning (p < 0.001). Conclusion: This is the first report of reference intervals for KIM-1 and NGAL using two analytical methods in a healthy pediatric population in both UK and US-based populations

    ADAM17 substrate release in proximal tubule drives kidney fibrosis

    Get PDF
    Kidney fibrosis following kidney injury is an unresolved health problem and causes significant morbidity and mortality worldwide. In a study into its molecular mechanism, we identified essential causative features. Acute or chronic kidney injury causes sustained elevation of a disintegrin and metalloprotease 17 (ADAM17); of its cleavage-activated proligand substrates, in particular of pro-TNFα and the EGFR ligand amphiregulin (pro-AREG); and of the substrates\u27 receptors. As a consequence, EGFR is persistently activated and triggers the synthesis and release of proinflammatory and profibrotic factors, resulting in macrophage/neutrophil ingress and fibrosis. ADAM17 hypomorphic mice, specific ADAM17 inhibitor-treated WT mice, or mice with inducible KO of ADAM17 in proximal tubule (Slc34a1-Cre) were significantly protected against these effects. In vitro, in proximal tubule cells, we show that AREG has unique profibrotic actions that are potentiated by TNFα-induced AREG cleavage. In vivo, in acute kidney injury (AKI) and chronic kidney disease (CKD, fibrosis) patients, soluble AREG is indeed highly upregulated in human urine, and both ADAM17 and AREG expression show strong positive correlation with fibrosis markers in related kidney biopsies. Our results indicate that targeting of the ADAM17 pathway represents a therapeutic target for human kidney fibrosis

    Ectopic Adipose Tissue Storage in the Left and the Right Renal Sinus is Asymmetric and Associated With Serum Kidney Injury Molecule-1 and Fibroblast Growth Factor-21 Levels Increase

    Get PDF
    Funding Information: Research relating to this abstract were funded by the European Social Fund within the project “Innovative technologies for acquisition and processing of biomedical images” No. 2013/0009/1DP/1.1.1.2.0/13/APIA/VIAA/014 , European Social Fund within the project “Support for Doctoral Studies at University of Latvia”, and by the grant No. 2014.10-4/VPP-5/16 BIOMEDICINE of the framework of the Latvian National Program. These funding sources had no role in the study design; collection, analysis and interpretation of data; writing of the manuscript; and decision to submit the manuscript for publication. Publisher Copyright: © 2016 The AuthorsObjective A potential mechanism by which obesity could promote hypertension and kidney diseases is through accumulation of adipose tissue in the renal sinus (RS). The aim of the study was to quantify RS and abdominal adipose tissue volumes and to evaluate serum kidney injury molecule (sKIM)-1 and fibroblast growth factor (FGF)-21 association with different adipose tissue compartments. Methods The cross-sectional study included 280 and follow-up study-40 asymptomatic participants; aged 38.30 ± 4.10. For all study participants computed tomography examination was performed, sKIM-1 and FGF-21 levels were measured. Results The results indicated asymmetrical deposition of adipose tissue into the RS even after corresponding kidney volume adjustment. The cross-sectional and the follow-up studies showed that sKIM-1 level was positively associated with RS adipose tissue volume increase for both genders. FGF-21 was positively associated with RS and retroperitoneal adipose tissue amount. Conclusions Regardless of gender adipose tissue in RS accumulates asymmetrically–the left RS accumulates a significantly higher amount of adipose tissue. Thus, primarily RS adipose tissue effects should be assessed on the left kidney. Accumulation of adipose tissue in the RS is related with the visceral adipose amount, KIM-1 and FGF-21 concentration increase in the blood serum.publishersversionPeer reviewe

    Mechanism-based urinary biomarkers to identify the potential for aminoglycoside-induced nephrotoxicity in premature neonates: a proof-of-concept study.

    Get PDF
    Premature infants are frequently exposed to aminoglycoside antibiotics. Novel urinary biomarkers may provide a non-invasive means for the early identification of aminoglycoside-related proximal tubule renal toxicity, to enable adjustment of treatment and identification of infants at risk of long-term renal impairment. In this proof-of-concept study, urine samples were collected from 41 premature neonates (≤ 32 weeks gestation) at least once per week, and daily during courses of gentamicin, and for 3 days afterwards. Significant increases were observed in the three urinary biomarkers measured (Kidney Injury Molecule-1 (KIM-1), Neutrophil Gelatinase-associated Lipocalin (NGAL), and N-acetyl-β-D-glucosaminidase (NAG)) during treatment with multiple courses of gentamicin. When adjusted for potential confounders, the treatment effect of gentamicin remained significant only for KIM-1 (mean difference from not treated, 1.35 ng/mg urinary creatinine; 95% CI 0.05-2.65). Our study shows that (a) it is possible to collect serial urine samples from premature neonates, and that (b) proximal tubule specific urinary biomarkers can act as indicators of aminoglycoside-associated nephrotoxicity in this age group. Further studies to investigate the clinical utility of novel urinary biomarkers in comparison to serum creatinine need to be undertaken

    Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead.

    Get PDF
    Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology

    KIM-1 as a blood-based marker for early detection of kidney cancer: a prospective nested case-control study

    Get PDF
    Purpose: Renal cell carcinoma (RCC) has the potential for cure with surgery when diagnosed at an early stage. Kidney injury molecule-1 (KIM-1) has been shown to be elevated in the plasma of RCC patients. We aimed to test whether plasma KIM-1 could represent a means of detecting RCC prior to clinical diagnosis. Experimental Design: KIM-1 concentrations were measured in pre-diagnostic plasma from 190 RCC cases and 190 controls nested within a population-based prospective cohort study. Cases had entered the cohort up to five years before diagnosis, and controls were matched on cases for date of birth, date at blood donation, sex, and country. We applied conditional logistic regression and flexible parametric survival models to evaluate the association between plasma KIM-1 concentrations and RCC risk and survival. Results: The incidence rate ratio (IRR) of RCC for a doubling in KIM-1 concentration was 1.71 (95% confidence interval [CI]: 1.44-2.03, p-value = 4.1x10-23), corresponding to an IRR of 63.3 (95% CI: 16.2-246.9) comparing the 80th to the 20th percentile of the KIM-1 distribution in this sample. Compared with a risk model including known risk factors of RCC (age, sex, country, body mass index and tobacco smoking status), a risk model additionally including KIM-1 substantially improved discrimination between cases and controls (area under the receiver operating characteristic curve of 0.8 compared to 0.7). High plasma KIM-1 concentrations were also associated with poorer survival (p=0.0053). Conclusions: Plasma KIM-1 concentrations could predict RCC incidence up to 5 years prior to diagnosis and were associated with poorer survival

    MAP kinase pathways and calcitonin influence CD44 alternate isoform expression in prostate cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dysregulated expression and splicing of cell adhesion marker CD44 is found in many types of cancer. In prostate cancer (PC) specifically, the standard isoform (CD44s) has been found to be downregulated compared with benign tissue whereas predominant variant isoform CD44v7-10 is upregulated. Mitogen-activated protein kinase pathways and paracrine calcitonin are two common factors linked to dysregulated expression and splicing of CD44 in cancer. Calcitonin has been found to increase proliferation and invasion in PC acting through the protein kinase A pathway.</p> <p>Methods</p> <p>In androgen-independent PC with known high CD44v7-10 expression, CD44 total and CD44v7-10 RNA or protein were assessed in response to exogenous and endogenous calcitonin and to inhibitors of protein kinase A, MEK, JNK, or p38 kinase. Benign cells and calcitonin receptor-negative PC cells were also tested.</p> <p>Results</p> <p>MEK or p38 but not JNK reduced CD44 total RNA by 40%–65% in cancer and benign cells. Inhibition of protein kinase A reduced CD44 total and v7-10 protein expression. In calcitonin receptor-positive cells only, calcitonin increased CD44 variant RNA and protein by 3 h and persisting to 48 h, apparently dependent on an uninhibited p38 pathway. Cells with constitutive CT expression showed an increase in CD44v7-10 mRNA but a decrease in CD44 total RNA.</p> <p>Conclusion</p> <p>The MEK pathway increases CD44 RNA, while calcitonin, acting through the protein kinase A and p38 pathway, facilitates variant splicing. These findings could be used in the formulation of therapeutic methods for PC targeting CD44 alternate splicing.</p

    Serum kidney injury molecule 1 and β2-microglobulin perform as well as larger biomarker panels for prediction of rapid decline in renal function in type 2 diabetes

    Get PDF
    Aims/hypothesis: As part of the Surrogate Markers for Micro- and Macrovascular Hard Endpoints for Innovative Diabetes Tools (SUMMIT) programme we previously reported that large panels of biomarkers derived from three analytical platforms maximised prediction of progression of renal decline in type 2 diabetes. Here, we hypothesised that smaller (n ≤ 5), platform-specific combinations of biomarkers selected from these larger panels might achieve similar prediction performance when tested in three additional type 2 diabetes cohorts. Methods: We used 657 serum samples, held under differing storage conditions, from the Scania Diabetes Registry (SDR) and Genetics of Diabetes Audit and Research Tayside (GoDARTS), and a further 183 nested case–control sample set from the Collaborative Atorvastatin in Diabetes Study (CARDS). We analysed 42 biomarkers measured on the SDR and GoDARTS samples by a variety of methods including standard ELISA, multiplexed ELISA (Luminex) and mass spectrometry. The subset of 21 Luminex biomarkers was also measured on the CARDS samples. We used the event definition of loss of >20% of baseline eGFR during follow-up from a baseline eGFR of 30–75 ml min−1 [1.73 m]−2. A total of 403 individuals experienced an event during a median follow-up of 7 years. We used discrete-time logistic regression models with tenfold cross-validation to assess association of biomarker panels with loss of kidney function. Results: Twelve biomarkers showed significant association with eGFR decline adjusted for covariates in one or more of the sample sets when evaluated singly. Kidney injury molecule 1 (KIM-1) and β2-microglobulin (B2M) showed the most consistent effects, with standardised odds ratios for progression of at least 1.4 (p < 0.0003) in all cohorts. A combination of B2M and KIM-1 added to clinical covariates, including baseline eGFR and albuminuria, modestly improved prediction, increasing the area under the curve in the SDR, Go-DARTS and CARDS by 0.079, 0.073 and 0.239, respectively. Neither the inclusion of additional Luminex biomarkers on top of B2M and KIM-1 nor a sparse mass spectrometry panel, nor the larger multiplatform panels previously identified, consistently improved prediction further across all validation sets. Conclusions/interpretation: Serum KIM-1 and B2M independently improve prediction of renal decline from an eGFR of 30–75 ml min−1 [1.73 m]−2 in type 2 diabetes beyond clinical factors and prior eGFR and are robust to varying sample storage conditions. Larger panels of biomarkers did not improve prediction beyond these two biomarkers
    corecore