279 research outputs found

    Replicating viral vector platform exploits alarmin signals for potent CD8<sup>+</sup> T cell-mediated tumour immunotherapy.

    Get PDF
    Viral infections lead to alarmin release and elicit potent cytotoxic effector T lymphocyte (CTL &lt;sup&gt;eff&lt;/sup&gt; ) responses. Conversely, the induction of protective tumour-specific CTL &lt;sup&gt;eff&lt;/sup&gt; and their recruitment into the tumour remain challenging tasks. Here we show that lymphocytic choriomeningitis virus (LCMV) can be engineered to serve as a replication competent, stably-attenuated immunotherapy vector (artLCMV). artLCMV delivers tumour-associated antigens to dendritic cells for efficient CTL priming. Unlike replication-deficient vectors, artLCMV targets also lymphoid tissue stroma cells expressing the alarmin interleukin-33. By triggering interleukin-33 signals, artLCMV elicits CTL &lt;sup&gt;eff&lt;/sup&gt; responses of higher magnitude and functionality than those induced by replication-deficient vectors. Superior anti-tumour efficacy of artLCMV immunotherapy depends on interleukin-33 signalling, and a massive CTL &lt;sup&gt;eff&lt;/sup&gt; influx triggers an inflammatory conversion of the tumour microenvironment. Our observations suggest that replicating viral delivery systems can release alarmins for improved anti-tumour efficacy. These mechanistic insights may outweigh safety concerns around replicating viral vectors in cancer immunotherapy

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Genotyping of Human Lice Suggests Multiple Emergences of Body Lice from Local Head Louse Populations

    Get PDF
    While being phenotypically and physiologically different, human head and body lice are indistinguishable based on mitochondrial and nuclear genes. As protein-coding genes are too conserved to provide significant genetic diversity, we performed strain-typing of a large collection of human head and body lice using variable intergenic spacer sequences. Ninety-seven human lice were classified into ninety-six genotypes based on four intergenic spacer sequences. Genotypic and phylogenetic analyses using these sequences suggested that human head and body lice are still indistinguishable. We hypothesized that the phenotypic and physiological differences between human head and body lice are controlled by very limited mutations. Under conditions of poor hygiene, head lice can propagate very quickly. Some of them will colonize clothing, producing a body louse variant (genetic or phenetic), which can lead to an epidemic. Lice collected in Rwanda and Burundi, where outbreaks of louse-borne diseases have been recently reported, are grouped tightly into a cluster and those collected from homeless people in France were also grouped into a cluster with lice collected in French non-homeless people. Our strain-typing approach based on highly variable intergenic spacers may be helpful to elucidate louse evolution and to survey louse-borne diseases

    Fungal endophytes from arid areas of Andalusia: high potential sources for antifungal and antitumoral agents

    Get PDF
    Native plant communities from arid areas present distinctive characteristics to survive in extreme conditions. The large number of poorly studied endemic plants represents a unique potential source for the discovery of novel fungal symbionts as well as host-specific endophytes not yet described. The addition of adsorptive polymeric resins in fungal fermentations has been seen to promote the production of new secondary metabolites and is a tool used consistently to generate new compounds with potential biological activities. A total of 349 fungal strains isolated from 63 selected plant species from arid ecosystems located in the southeast of the Iberian Peninsula, were characterized morphologically as well as based on their ITS/28S ribosomal gene sequences. The fungal community isolated was distributed among 19 orders including Basidiomycetes and Ascomycetes, being Pleosporales the most abundant order. In total, 107 different genera were identified being Neocamarosporium the genus most frequently isolated from these plants, followed by Preussia and Alternaria. Strains were grown in four different media in presence and absence of selected resins to promote chemical diversity generation of new secondary metabolites. Fermentation extracts were evaluated, looking for new antifungal activities against plant and human fungal pathogens, as well as, cytotoxic activities against the human liver cancer cell line HepG2. From the 349 isolates tested, 126 (36%) exhibited significant bioactivities including 58 strains with exclusive antifungal properties and 33 strains with exclusive activity against the HepG2 hepatocellular carcinoma cell line. After LCMS analysis, 68 known bioactive secondary metabolites could be identified as produced by 96 strains, and 12 likely unknown compounds were found in a subset of 14 fungal endophytes. The chemical profiles of the differential expression of induced activities were compared. As proof of concept, ten active secondary metabolites only produced in the presence of resins were purified and identified. The structures of three of these compounds were new and herein are elucidated.This work was supported by Fundación MEDINA and the Andalusian Government grant RNM-7987 ‘Sustainable use of plants and their fungal parasites from arid regions of Andalucía for new molecules useful for antifungals and neuroprotectors’

    Major Role of Microbes in Carbon Fluxes during Austral Winter in the Southern Drake Passage

    Get PDF
    Carbon cycling in Southern Ocean is a major issue in climate change, hence the need to understand the role of biota in the regulation of carbon fixation and cycling. Southern Ocean is a heterogeneous system, characterized by a strong seasonality, due to long dark winter. Yet, currently little is known about biogeochemical dynamics during this season, particularly in the deeper part of the ocean. We studied bacterial communities and processes in summer and winter cruises in the southern Drake Passage. Here we show that in winter, when the primary production is greatly reduced, Bacteria and Archaea become the major producers of biogenic particles, at the expense of dissolved organic carbon drawdown. Heterotrophic production and chemoautotrophic CO2 fixation rates were substantial, also in deep water, and bacterial populations were controlled by protists and viruses. A dynamic food web is also consistent with the observed temporal and spatial variations in archaeal and bacterial communities that might exploit various niches. Thus, Southern Ocean microbial loop may substantially maintain a wintertime food web and system respiration at the expense of summer produced DOC as well as regenerate nutrients and iron. Our findings have important implications for Southern Ocean ecosystem functioning and carbon cycle and its manipulation by iron enrichment to achieve net sequestration of atmospheric CO2

    Frequency, prognostic impact, and subtype association of 8p12, 8q24, 11q13, 12p13, 17q12, and 20q13 amplifications in breast cancers

    Get PDF
    BACKGROUND: Oncogene amplification and overexpression occur in tumor cells. Amplification status may provide diagnostic and prognostic information and may lead to new treatment strategies. Chromosomal regions 8p12, 8q24, 11q13, 17q12 and 20q13 are recurrently amplified in breast cancers. METHODS: To assess the frequencies and clinical impact of amplifications, we analyzed 547 invasive breast tumors organized in a tissue microarray (TMA) by fluorescence in situ hybridization (FISH) and calculated correlations with histoclinical features and prognosis. BAC probes were designed for: (i) two 8p12 subregions centered on RAB11FIP1 and FGFR1 loci, respectively; (ii) 11q13 region centered on CCND1; (iii) 12p13 region spanning NOL1; and (iv) three 20q13 subregions centered on MYBL2, ZNF217 and AURKA, respectively. Regions 8q24 and 17q12 were analyzed with MYC and ERBB2 commercial probes, respectively. RESULTS: We observed amplification of 8p12 (amplified at RAB11FIP1 and/or FGFR1) in 22.8%, 8q24 in 6.1%, 11q13 in 19.6%, 12p13 in 4.1%, 17q12 in 9.9%, 20q13(Z )(amplified at ZNF217 only) in 9.9%, and 20q13(Co )(co-amplification of two or three 20q13 loci) in 8.5% of cases. The 8q24, 12p13, and 17q12 amplifications were correlated with high grade. The most frequent single amplifications were 8p12 (9.8%), 8q24 (3.3%) and 12p13 (3.3%), 20q13(Z )and 20q13(Co )(1.6%) regions. The 17q12 and 11q13 regions were never found amplified alone. The most frequent co-amplification was 8p12/11q13. Amplifications of 8p12 and 17q12 were associated with poor outcome. Amplification of 12p13 was associated with basal molecular subtype. CONCLUSION: Our results establish the frequencies, prognostic impacts and subtype associations of various amplifications and co-amplifications in breast cancers

    Anthroponotic transmission of Cryptosporidium parvum predominates in countries with poorer sanitation - a systematic review and meta-analysis

    Get PDF
    Background: Globally cryptosporidiosis is one of the commonest causes of mortality in children under 24 months old and may be associated with important longterm health effects. Whilst most strains of Cryptosporidium parvum are zoonotic, C. parvum IIc is almost certainly anthroponotic. The global distribution of this potentially important emerging infection is not clear. Methods: We conducted a systematic review of papers identifying the subtype distribution of C. parvum infections globally. We searched PubMed and Scopus using the following key terms Cryptospor* AND parvum AND (genotyp* OR subtyp* OR gp60). Studies were eligible for inclusion if they had found C. parvum within their human study population and had subtyped some or all of these samples using standard gp60 subtyping. Pooled analyses of the proportion of strains being of the IIc subtype were determined using StatsDirect. Meta-regression analyses were run to determine any association between the relative prevalence of IIc and Gross Domestic Product, proportion of the population with access to improved drinking water and improved sanitation. Results: From an initial 843 studies, 85 were included in further analysis. Cryptosporidium parvum IIc was found in 43 of these 85 studies. Across all studies the pooled estimate of relative prevalence of IIc was 19.0% (95% CI: 12.9–25.9%), but there was substantial heterogeneity. In a meta-regression analysis, the relative proportion of all C. parvum infections being IIc decreased as the percentage of the population with access to improved sanitation increased and was some 3.4 times higher in those studies focussing on HIV-positive indivduals. Conclusions: The anthroponotic C. parvum IIc predominates primarily in lower-income countries with poor sanitation and in HIV-positive individuals. Given the apparent enhanced post-infectious virulence of the other main anthroponotic species of Cryptosporidium (C. hominis), it is important to learn about the impact of this subtype on human health

    Anthroponotic transmission of Cryptosporidium parvum predominates in countries with poorer sanitation - a systematic review and meta-analysis

    Get PDF
    Background: Globally cryptosporidiosis is one of the commonest causes of mortality in children under 24 months old and may be associated with important longterm health effects. Whilst most strains of Cryptosporidium parvum are zoonotic, C. parvum IIc is almost certainly anthroponotic. The global distribution of this potentially important emerging infection is not clear. Methods: We conducted a systematic review of papers identifying the subtype distribution of C. parvum infections globally. We searched PubMed and Scopus using the following key terms Cryptospor* AND parvum AND (genotyp* OR subtyp* OR gp60). Studies were eligible for inclusion if they had found C. parvum within their human study population and had subtyped some or all of these samples using standard gp60 subtyping. Pooled analyses of the proportion of strains being of the IIc subtype were determined using StatsDirect. Meta-regression analyses were run to determine any association between the relative prevalence of IIc and Gross Domestic Product, proportion of the population with access to improved drinking water and improved sanitation. Results: From an initial 843 studies, 85 were included in further analysis. Cryptosporidium parvum IIc was found in 43 of these 85 studies. Across all studies the pooled estimate of relative prevalence of IIc was 19.0% (95% CI: 12.9–25.9%), but there was substantial heterogeneity. In a meta-regression analysis, the relative proportion of all C. parvum infections being IIc decreased as the percentage of the population with access to improved sanitation increased and was some 3.4 times higher in those studies focussing on HIV-positive indivduals. Conclusions: The anthroponotic C. parvum IIc predominates primarily in lower-income countries with poor sanitation and in HIV-positive individuals. Given the apparent enhanced post-infectious virulence of the other main anthroponotic species of Cryptosporidium (C. hominis), it is important to learn about the impact of this subtype on human health
    corecore