625 research outputs found

    Stereotyping starlings are more 'pessimistic'.

    Get PDF
    Negative affect in humans and animals is known to cause individuals to interpret ambiguous stimuli pessimistically, a phenomenon termed 'cognitive bias'. Here, we used captive European starlings (Sturnus vulgaris) to test the hypothesis that a reduction in environmental conditions, from enriched to non-enriched cages, would engender negative affect, and hence 'pessimistic' biases. We also explored whether individual differences in stereotypic behaviour (repetitive somersaulting) predicted 'pessimism'. Eight birds were trained on a novel conditional discrimination task with differential rewards, in which background shade (light or dark) determined which of two covered dishes contained a food reward. The reward was small when the background was light, but large when the background was dark. We then presented background shades intermediate between those trained to assess the birds' bias to choose the dish associated with the smaller food reward (a 'pessimistic' judgement) when the discriminative stimulus was ambiguous. Contrary to predictions, changes in the level of cage enrichment had no effect on 'pessimism'. However, changes in the latency to choose and probability of expressing a choice suggested that birds learnt rapidly that trials with ambiguous stimuli were unreinforced. Individual differences in performance of stereotypies did predict 'pessimism'. Specifically, birds that somersaulted were more likely to choose the dish associated with the smaller food reward in the presence of the most ambiguous discriminative stimulus. We propose that somersaulting is part of a wider suite of behavioural traits indicative of a stress response to captive conditions that is symptomatic of a negative affective state

    Regional mitochondrial DNA and cell-type changes in post-mortem brains of non-diabetic Alzheimer’s disease are not present in diabetic Alzheimer’s disease

    Get PDF
    Background: Mitochondrial dysfunction is implicated in both diabetes and Alzheimer’s disease (AD), and diabetes also increases the risk of AD, however the combined impact of AD and diabetes on brain mitochondria is unknown. The purpose of this study was to test the hypothesis that the combination of both diabetes and AD exacerbates mitochondrial dysfunction. Methods: Post-mortem human brains (n=74), were used to determine mitochondrial DNA (mtDNA) content of cerebellum, frontal cortex and parietal cortex by quantifying absolute mtDNA copy number/cell using real time qPCR. mtDNA content was compared between diabetic and non-diabetic cases representing non-cognitively impaired controls (NCI), mildly cognitively impaired (MCI) and AD. A subset of parietal cortex samples was used to quantify mRNAs corresponding to cell types and mitochondrial function. Immune-staining of parietal cortex sections followed by semi-automated stereological assessment was performed to assess cell types. Results. Using mtDNA as an indicator of mitochondrial content, we observed significant regional variation, being highest in the parietal cortex, and lowest in the cerebellum. In the absence of diabetes, AD cases had decreased parietal cortex mtDNA, reduced MAP2 (neuronal) mRNA and increased GFAP (astrocyte) mRNA, relative to NCI. However, in the presence of both diabetes and AD, we did not observe these changes in the parietal cortex. Irrespective of cognitive status, all 3 brain regions in diabetic cases had significantly higher mtDNA than the non-diabetic cases. Conclusion. Our data show that the parietal cortex has the highest mitochondrial content but is also the most vulnerable to changes in AD, as shown by reduced mtDNA and neurones in this region. In contrast, when patients have both diabetes and AD, the AD associated parietal cortex changes are no longer seen, suggesting that the pathology observed in diabetic AD may be different to that seen in non-diabetic AD. The lack of clear functional changes in mitochondrial parameters in diabetic AD suggest that there may be different mechanisms contributing to cognitive impairment in diabetes and their impact on the respective disease neuro-pathologies remain to be fully understood

    Computed Tomography Measurement of Rib Cage Morphometry in Emphysema

    Get PDF
    Background: Factors determining the shape of the human rib cage are not completely understood. We aimed to quantify the contribution of anthropometric and COPD-related changes to rib cage variability in adult cigarette smokers. Methods: Rib cage diameters and areas (calculated from the inner surface of the rib cage) in 816 smokers with or without COPD, were evaluated at three anatomical levels using computed tomography (CT). CTs were analyzed with software, which allows quantification of total emphysema (emphysema%). The relationship between rib cage measurements and anthropometric factors, lung function indices, and %emphysema were tested using linear regression models. Results: A model that included gender, age, BMI, emphysema%, forced expiratory volume in one second (FEV1)%, and forced vital capacity (FVC)% fit best with the rib cage measurements (R2  = 64% for the rib cage area variation at the lower anatomical level). Gender had the biggest impact on rib cage diameter and area (105.3 cm2; 95% CI: 111.7 to 98.8 for male lower area). Emphysema% was responsible for an increase in size of upper and middle CT areas (up to 5.4 cm2; 95% CI: 3.0 to 7.8 for an emphysema increase of 5%). Lower rib cage areas decreased as FVC% decreased (5.1 cm2; 95% CI: 2.5 to 7.6 for 10 percentage points of FVC variation). Conclusions: This study demonstrates that simple CT measurements can predict rib cage morphometric variability and also highlight relationships between rib cage morphometry and emphysema

    Search for CP violation in D+→ϕπ+ and D+s→K0Sπ+ decays

    Get PDF
    A search for CP violation in D + → ϕπ + decays is performed using data collected in 2011 by the LHCb experiment corresponding to an integrated luminosity of 1.0 fb−1 at a centre of mass energy of 7 TeV. The CP -violating asymmetry is measured to be (−0.04 ± 0.14 ± 0.14)% for candidates with K − K + mass within 20 MeV/c 2 of the ϕ meson mass. A search for a CP -violating asymmetry that varies across the ϕ mass region of the D + → K − K + π + Dalitz plot is also performed, and no evidence for CP violation is found. In addition, the CP asymmetry in the D+s→K0Sπ+ decay is measured to be (0.61 ± 0.83 ± 0.14)%

    Observation and study of baryonic B decays: B -> D(*) p pbar, D(*) p pbar pi, and D(*) p pbar pi pi

    Get PDF
    We present a study of ten B-meson decays to a D(*), a proton-antiproton pair, and a system of up to two pions using BaBar's data set of 455x10^6 BBbar pairs. Four of the modes (B0bar -> D0 p anti-p, B0bar -> D*0 p anti-p, B0bar -> D+ p anti-p pi-, B0bar -> D*+ p anti-p pi-) are studied with improved statistics compared to previous measurements; six of the modes (B- -> D0 p anti-p pi-, B- -> D*0 p anti-p pi-, B0bar -> D0 p anti-p pi- pi+, B0bar -> D*0 p anti-p pi- pi+, B- -> D+ p anti-p pi- pi-, B- -> D*+ p anti-p pi- pi-) are first observations. The branching fractions for 3- and 5-body decays are suppressed compared to 4-body decays. Kinematic distributions for 3-body decays show non-overlapping threshold enhancements in m(p anti-p) and m(D(*)0 p) in the Dalitz plots. For 4-body decays, m(p pi-) mass projections show a narrow peak with mass and full width of (1497.4 +- 3.0 +- 0.9) MeV/c2, and (47 +- 12 +- 4) MeV/c2, respectively, where the first (second) errors are statistical (systematic). For 5-body decays, mass projections are similar to phase space expectations. All results are preliminary.Comment: 28 pages, 90 postscript figures, submitted to LP0

    Study of Bc+B_c^+ decays to the K+Kπ+K^+K^-\pi^+ final state and evidence for the decay Bc+χc0π+B_c^+\to\chi_{c0}\pi^+

    Get PDF
    A study of Bc+K+Kπ+B_c^+\to K^+K^-\pi^+ decays is performed for the first time using data corresponding to an integrated luminosity of 3.0 fb1\mathrm{fb}^{-1} collected by the LHCb experiment in pppp collisions at centre-of-mass energies of 77 and 88 TeV. Evidence for the decay Bc+χc0(K+K)π+B_c^+\to\chi_{c0}(\to K^+K^-)\pi^+ is reported with a significance of 4.0 standard deviations, resulting in the measurement of σ(Bc+)σ(B+)×B(Bc+χc0π+)\frac{\sigma(B_c^+)}{\sigma(B^+)}\times\mathcal{B}(B_c^+\to\chi_{c0}\pi^+) to be (9.83.0+3.4(stat)±0.8(syst))×106(9.8^{+3.4}_{-3.0}(\mathrm{stat})\pm 0.8(\mathrm{syst}))\times 10^{-6}. Here B\mathcal{B} denotes a branching fraction while σ(Bc+)\sigma(B_c^+) and σ(B+)\sigma(B^+) are the production cross-sections for Bc+B_c^+ and B+B^+ mesons. An indication of bˉc\bar b c weak annihilation is found for the region m(Kπ+)<1.834GeV ⁣/c2m(K^-\pi^+)<1.834\mathrm{\,Ge\kern -0.1em V\!/}c^2, with a significance of 2.4 standard deviations.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-022.html, link to supplemental material inserted in the reference

    Search for the standard model Higgs boson at LEP

    Get PDF

    Rapid automatic segmentation of abnormal tissue in late gadolinium enhancement cardiovascular magnetic resonance images for improved management of long-standing persistent atrial fibrillation

    Get PDF
    Background: Atrial fibrillation (AF) is the most common heart rhythm disorder. In order for late Gd enhancement cardiovascular magnetic resonance (LGE CMR) to ameliorate the AF management, the ready availability of the accurate enhancement segmentation is required. However, the computer-aided segmentation of enhancement in LGE CMR of AF is still an open question. Additionally, the number of centres that have reported successful application of LGE CMR to guide clinical AF strategies remains low, while the debate on LGE CMR’s diagnostic ability for AF still holds. The aim of this study is to propose a method that reliably distinguishes enhanced (abnormal) from non-enhanced (healthy) tissue within the left atrial wall of (pre-ablation and 3 months post-ablation) LGE CMR data-sets from long-standing persistent AF patients studied at our centre. Methods: Enhancement segmentation was achieved by employing thresholds benchmarked against the statistics of the whole left atrial blood-pool (LABP). The test-set cross-validation mechanism was applied to determine the input feature representation and algorithm that best predict enhancement threshold levels. Results: Global normalized intensity threshold levels T PRE = 1 1/4 and T POST = 1 5/8 were found to segment enhancement in data-sets acquired pre-ablation and at 3 months post-ablation, respectively. The segmentation results were corroborated by using visual inspection of LGE CMR brightness levels and one endocardial bipolar voltage map. The measured extent of pre-ablation fibrosis fell within the normal range for the specific arrhythmia phenotype. 3D volume renderings of segmented post-ablation enhancement emulated the expected ablation lesion patterns. By comparing our technique with other related approaches that proposed different threshold levels (although they also relied on reference regions from within the LABP) for segmenting enhancement in LGE CMR data-sets of AF patients, we illustrated that the cut-off levels employed by other centres may not be usable for clinical studies performed in our centre. Conclusions: The proposed technique has great potential for successful employment in the AF management within our centre. It provides a highly desirable validation of the LGE CMR technique for AF studies. Inter-centre differences in the CMR acquisition protocol and image analysis strategy inevitably impede the selection of a universally optimal algorithm for segmentation of enhancement in AF studies
    corecore