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Abstract 

 Atrial fibrillation (AF) is the most common heart rhythm disorder. In order for late Gd 

enhancement cardiovascular magnetic resonance (LGE CMR) to ameliorate the AF management, the 

ready availability of the accurate enhancement segmentation is required. However, the computer-

aided segmentation of enhancement in LGE CMR of AF is still an open question. Additionally, the 

number of centres that have reported successful application of LGE CMR to guide clinical AF 

strategies remains low, while the debate on LGE CMR's diagnostic ability for AF still holds. The aim of 

this study is to propose a method that reliably distinguishes enhanced (abnormal) from non-

enhanced (healthy) tissue within the left atrial wall of (pre-ablation and three months post-ablation) 

LGE CMR data-sets from long-standing persistent AF patients studied at our centre.  

 Enhancement segmentation was achieved by employing thresholds benchmarked against 

the statistics of the whole left atrial blood-pool (LABP). The test-set cross-validation mechanism was 

applied to determine the input feature representation and algorithm that best predict enhancement 

threshold  levels.  

 Global normalized intensity threshold levels TPRE=1 1/4 and TPOST=1 5/8 were found to 

segment enhancement in data-sets acquired pre-ablation and at three months post-ablation, 

respectively. The segmentation results were corroborated by using visual inspection of LGE CMR 

brightness levels and one endocardial bipolar voltage map. The measured extent of pre-ablation 

fibrosis fell within the normal range for the specific arrhythmia phenotype. 3D volume renderings of 

segmented post-ablation enhancement emulated the expected ablation lesion patterns. By 

comparing our technique with other related approaches that proposed different threshold levels 

(although they also relied on reference regions from within the LABP) for segmenting enhancement 

in LGE CMR data-sets of AF patients, we illustrated that the cut-off levels employed by other centres 

may not be usable for clinical studies performed in our centre.   



3 

 

 The proposed technique has great potential for successful employment in the AF 

management within our centre. It provides a highly desirable validation of the LGE CMR technique 

for AF studies. Inter-centre differences in the CMR acquisition protocol and image analysis strategy 

inevitably impede the selection of a universally optimal algorithm for segmentation of enhancement 

in AF studies. 
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1. Introduction 

1.1 Clinical backdrop 

 Atrial fibrillation (AF) occurs when chaotic electrical activity develops in the atrial walls, 

causing the atrial muscle cells to contract irregularly and rapidly. Apart from electrical and 

contractile remodelling, it is well established [1,2] that AF is also associated with structural 

remodelling, including left atrial fibrosis. Fibrotic changes in the left atrial substrate have been 

postulated [1,2] to underlie the persistence and sustainability of AF. AF is the most common heart 

rhythm disorder; it affects 2% of the population, a figure that is rising fast [3]. AF has been connected 

[4,5,6] with a notable reduction in quality of life, poor mental health, disability, and a significant 

increase in the risk of stroke, dementia, and death. It is a serious and growing drain on the purse of 

healthcare providers worldwide, with the estimated [3] annual (2005) cost of AF treatment in USA to 

be $6.65 billion. 
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 Ablation (by catheter or surgical techniques) of the left atrium (LA) has been widely accepted 

[7] as a clinical therapy for AF patients that are refractory to anti-arrhythmic medicines and direct 

current cardio-version. It is based on the principle of restoring sinus rhythm by forming lesions (scar 

tissue) that either electrically isolate the triggers of ectopic beats or modify the AF-favouring left 

atrial substrate. Despite efforts to improve targeting and delivery of AF ablation, the long-term 

durable restoration of sinus rhythm is achieved only for a moderate part of the AF population with 

AF-free rates after a single ablation to vary [8,9] between 30-50% at five years follow-up. Patients 

who fail the initial ablation commonly undergo redo procedures, thus reducing the cost-

effectiveness of AF ablation and increasing the risk of associated complications.   

 The high failure rate of ablation in AF patients is in part attributable to: (i) Difficulty in 

identifying befitting ablation candidates. Excluding patients unlikely to benefit from AF ablation 

would improve the success rates. (ii) Incapability to establish the ideal ablation strategy for every 

patient. Experts have agreed [10] that one ablation strategy does not fit all AF patients. (iii) Limited 

information about the location and extent of the ablation-induced injury during and/or after the 

procedure. Such information could be used to identify gaps in ablation lines and guide initial/redo 

operations. (iv) Restricted knowledge of the lesion set permanence at the procedure time. This 

renders the ablation end-point definition extremely dubious. Silent electrograms in the ablated area 

are frequently temporary. Indeed, restored electrical connection at previously targeted sites almost 

invariably takes place in patients who return for a repeat procedure [10,11].  

 The advent of late gadolinium (Gd) enhancement cardiovascular magnetic resonance (LGE 

CMR) more than a decade ago allowed the differentiation between normal and diseased left 

ventricular myocardium [12]. Its foundation lies in the slow washout kinetics of Gd agents in 

abnormal tissue. In brief, the delayed removal of Gd from abnormal cardiac tissue areas results in 

them being detectable as enhanced (i.e., brighter than healthy myocardium) zones. More recently, 

three-dimensional (3D) high spatial resolution LGE CMR has shown promise in increasing the success 
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rates of AF ablation procedure. It offers the potential to deal with the AF ablation failing causes 

described above by non-invasively imaging left atrial (i) gradual native fibrosis associated with AF 

[13-30], (ii) iatrogenic ablation-induced lesion sets [11,15,16,18,22,26,27,31-47]. The former LGE 

CMR-derived tissue characterization has been suggested to (i) assess patient suitability for AF 

ablation by identifying potential non-responders [13-16,18,19,23], (ii) define the most appropriate 

ablation approach [15,16,21], (iii) select anticoagulation strategy [16-18]. Correspondingly, the latter 

LGE CMR-derived tissue visualization has been proposed to (i) guide redo ablation procedures 

[16,18,22,32,36,47], (ii) deter the inadequate/ample lesion formation in the real-time (i.e., time-of-

procedure) setting by assisting in the definition of a punctual ablation endpoint [16,38-40,42-44]. 

The use of LGE CMR to define native left atrial fibrosis associated with AF has been corroborated by 

histopathology studies [23,48]. Similarly, a comprehensive histological validation of using LGE CMR 

to characterize AF ablation-induced wall injury has been presented [49]. 

 

1.2 Challenges & current situation in the enhancement segmentation literature   

 The potential role of LGE CMR in the AF management discussed in the previous section 

underlines the great necessity for accurate enhanced tissue segmentation. However, this 

segmentation is challenged by many factors. At first, the wall of the LA is very thin. This, when 

combined with the current limits of CMR spatial resolution, results in the contrast between healthy 

(non-enhanced) and abnormal (enhanced) left atrial tissue being poorly visualized. Simultaneously, 

the mean intensity of enhanced regions varies (with the complex response to scan parameters and 

patient physiology) in unpredictable ways rendering the selection of a signal intensity threshold not 

so straightforward. In addition, there are few enhanced structures in the proximity of the LA (such as 

the mitral valve leaflets, the ascending and descending aorta walls, the right atrial wall at the 

septum, etc) that are not related to left atrial fibrosis or ablation lesion and need to be meticulously 

distinguished. Likewise, false positives may be also generated by the navigator beam [50], which, in 
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turn, reduces LGE CMR's ability to visualize abnormal cardiac tissue near the two right pulmonary 

veins of the LA. To add to the above, the typically irregular heart-rate of AF patients results [51] in (i) 

ghosting artefacts that further degrade image quality, (ii) failure to accentuate the existent 

abnormality due to imperfect healthy myocardium nulling. Despite the difficulties in classifying 

enhanced tissue in the LA, several studies have proposed related techniques. Next, an overview of 

the previously published approaches is provided.  

 To begin with, few AF studies [32,41,44] have performed manual segmentation of 

enhancement by relying on visual perception of experts. However, such an approach is considerably 

time-consuming and labor-intensive. In addition, it is very difficult to train new technicians to 

perform this task. Besides, the manual enhancement classification is prone to high intra- and inter-

observer variability (even among experts) due to the factors (discussed above) that challenge the 

enhancement classification and also due to the high degree of patchiness that is characteristic of LGE 

CMR data-sets of AF patients. As a result, the manual segmentation of enhancement in AF is 

regarded as a rather unfavourable approach for use in clinical practice. 

 Motivated by earlier LGE CMR studies [52] on the infarcted left ventricle, a common recipe 

for segmenting left atrial enhanced tissue in AF patients is using a fixed (i.e., the same for every AF 

patient) signal intensity threshold expressed in terms of the two basic statistical measures [namely 

mean value and standard deviation (SD)] of the signal intensity distribution within a reference non-

enhanced (healthy) region. With regard to pre-ablation LGE CMR, example reported intensity 

threshold levels above which a left atrial wall voxel was defined as fibrotic tissue are the three [18] 

and four [19] SDs above the mean intensity of a region of the left atrial blood-pool (LABP), the two 

[22] SDs above the mean intensity of a healthy left atrial wall region, and the six [27] SDs above the 

mean intensity of a region of the left ventricular wall. Analogously, example threshold levels that 

have been used in post-ablation LGE CMR studies to distinguish between healthy and abnormal 

tissue are the three [18] SDs above the mean intensity of a region of the LABP, the six [38,42,53] SDs 
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above the mean intensity of a region of the right ventricular wall, the two [22] and three 

[11,15,33,35,36,45] SDs above the mean intensity of a healthy left atrial wall region, and the six [27] 

SDs above the mean intensity of a region of the left ventricular wall. At the same time, other fixed 

approaches have proposed using 40% [47] and 50% [27] of the maximum left atrial wall intensity as 

post- and pre-ablation enhancement thresholds, respectively, and also the 50% [27] of the maximum 

mitral valve intensity as a cut-off level for both pre- and post-ablation enhanced tissue. However, 

one downside of all these techniques is that they require segmentation of an additional reference 

region. 

 To further compensate for the measurement variability due to inter-patient differences 

(such as body mass index, hematocrit, glomerular filtration rate, etc.), several studies have 

suggested [13-17,30,46,48,54] to employ a varying (among different patients) threshold level that is 

benchmarked against the statistics of a healthy region. However, these methods are impeded by lack 

of automation since the threshold selection for every patient is always decided interactively by an 

experienced observer. An alternative empirical method [34,37] proposed to use the minimum 

intensity that eliminated most of the blood-pool pixels in order to acquire a patient-specific 

enhancement threshold. As well as lack of objectivity and automation, one would expect such an 

approach to suffer from poor reproducibility all the same. More recently, a method [20] using graph-

cuts was brought forward. According to this technique the enhancement segmentation is expressed 

as a Markov random field energy function minimization problem. However, this method involves a 

computationally demanding iterative process where hundreds of thousands nodes require 

processing. As a result, the graph-cuts method does not lend itself well for the real-time direct 

visualization of left atrial wall tissue destruction. 

 To summarize, the current situation in the literature is that the computer-aided classification 

of enhanced tissue in LGE CMR of AF is still an open question, and no algorithm has been deemed 

clearly better than others [55]. To add to the above, the number of centres that have reported 
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successful application of LGE CMR to guide clinical AF strategies remains low, while the debate on 

this technique's diagnostic ability for AF still holds [24,41,53,56]. 

 In this paper, we propose a technique to automatically segment enhanced tissue within the 

left atrial wall of (pre-ablation and three months post-ablation) LGE CMR data-sets of long-standing 

persistent AF patients studied at our centre. We employ thresholds that are benchmarked against 

the statistics of the whole LABP. The test-set cross-validation mechanism is applied to determine the 

input feature representation and algorithm that best predict enhancement threshold  levels. The 

proposed enhancement classification algorithm was designed to provide the following advantages: 

(i) Self-regulated classification without requiring expert user interaction, (ii) simplicity to implement 

allowing fast availability of results, (iii) freedom from intra- and inter-observer variability, (iv) 

provision of reproducible results, (v) lack of need to manually outline an additional healthy 

myocardial region, (vi) development was specific to the LA, and (vii) production of realistic estimates 

regardless mean enhancement intensity and image contrast ratio.  

  

 

2. Materials and methods 

2.1. Study design 

 Thirteen patients (9 male, 62±11 years old) presented to Royal Brompton Hospital for first-

time ablation to treat long-standing persistent drug-refractory AF. 3D LGE CMR data-sets acquired 

both pre-procedurally and at three months post-ablation were included in this study. We addressed 

the problem of automatically segmenting left atrial wall enhanced tissue from these data-sets. The 

image quality was assessed by an expert in CMR. The study was approved by the local (UK) research 

ethics committee. Written informed consent was obtained from all research participants.  

 

2.2 The ablation procedure 
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 All ablation procedures were performed under general anesthesia. Thoracoscopic bipolar 

radiofrequency surgical ablation was performed on five consecutive patients. The pulmonary veins 

were isolated using a clamp and a posterior wall box lesion was created using linear ablation 

connecting the two superior and inferior veins. The left atrial appendage was excluded in three 

patients. Percutaneous catheter ablation was delivered on the remaining patients, who underwent a 

stepwise lesion set strategy: (i) Antral pulmonary vein isolation, (ii) linear ablation at the left atrial 

roof and mitral isthmus, and (iii) ablation of the left atrial complex fractionated electrograms. Atrial 

anatomy was reconstructed with the NavX mapping system with an AFocusII catheter (St. Jude 

Medical, St. Paul, Minnesota, USA). Radiofrequency ablation was performed with a 3.5-mm irrigated-

tip catheter (ThermoCool, Biosense Webster, Diamond Bar, California, USA).  

 

2.3 LGE CMR acquisition protocol 

 CMR was carried out using a Siemens Magnetom Avanto 1.5Tesla scanner (Siemens Medical 

Systems, Erlangen, Germany). Imaging [57] was performed fifteen minutes after Gd administration 

(Gadovist - gadobutrol, 0.1mmol/kg body weight, Bayer-Schering, Berlin, Germany) when a transient 

steady-state of Gd wash-in and wash-out of normal myocardium had been reached. Transverse 

navigator-gated 3D LGE imaging was performed using a segmented gradient echo sequence as 

follows: 32 – 36 slices at 1.5mm x 1.5mm x 4mm, reconstructed to 64 – 72 slices at 0.7mm x 0.7mm 

x 2mm, generalised auto-calibrating partially parallel acquisition (GRAPPA) x2, acquisition window 

125ms positioned within the subject-specific rest period, single R-wave gating, chemical shift fat 

suppression, centric kz and centric ky ordering, flip angle 20o, crossed-pairs navigator positioned 

over the dome of the right hemi-diaphragm with nominal navigator acceptance window size of 

5mm. The inversion time (TI) used for conventional two-dimensional (2D) breath-hold LGE imaging 

acquired with alternate R-wave gating was reduced for single R-wave gating by an amount 
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depending on the patient’s heart rate. Nominal acquisition durations were 144 – 160 cardiac cycles, 

assuming 100% respiratory efficiency. 

 

2.4 The proposed enhancement classification technique 

 In this section, we describe the work-flow for achieving automatic segmentation of 

enhancement in LGE CMR data-sets of AF patients studied at our center. In order to assess how well 

the proposed segmentation technique will generalize in independent (i.e., other than those included 

in this study) LGE CMR data-sets, we employed the test set cross-validation mechanism [58]. This 

avenue involved (i) learning the segmentation technique by relying only on a random selection of 

3/4 of the study population (training LGE CMR data-sets), and (ii) predicting the responses 

(enhancement distributions) of the remaining population sub-set (testing LGE CMR data-sets). To 

improve reliability of future estimations, three rounds of the cross-validation tool were performed. 

 In pursuance of classifying and isolating AF ablation-related injured tissue and/or pre-

existent fibrotic tissue within the left atrial wall, the whole LABP was employed as the reference 

region. The reason for this choice is that the boundaries of the LABP chamber coincide with the left 

atrial endocardial surface. Therefore, no extra segmentation step (apart from the left atrial wall 

segmentation) was required to obtain the specific reference region. Following this selection, 

intensity I at each left atrial wall voxel i was normalized as 

      NI(i)=[I(i) – μbp]/σbp                        (1) 

where NI is the normalized intensity and μbp and σbp are the mean value and the standard deviation 

of the signal intensity distribution of the voxels that constitute the LABP.  

 Next, and with the view to acquiring the ''actual'' left atrial wall normalized intensity 

thresholds that mark out the lower boundaries of fibrotic and/or lesion tissue for the ''training'' 

data-sets of this study, we relied on an expert observer judgement-based approach. In particular, 

each of three specialists in LGE CMR was independently shown enhanced tissue classification results 
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(super-imposed on the LGE CMR data-sets) for normalized intensity cut-off levels that varied from 

one to six, in steps of 1/8. Subsequently, each expert selected (based on visual perception) the most 

appropriate threshold level to define enhanced tissue for each data-set (patient). Our objective was 

to resolve whether a global threshold of normalized intensity would be appropriate for all patients, 

and if not, to determine the input feature representation and algorithm that best predict the output 

(i.e., threshold level for enhancement).  

 The segmentation of the left atrial wall from the LGE CMR data-sets is an integral part of the 

proposed classification of each left atrial wall voxel as healthy tissue versus fibrotic/injured tissue. In 

this study, the left atrial wall segmentation (that encompasses the LABP segmentation) was 

performed semi-automatically. At first, a user-guided level set-based 3D geodesic active contour 

method [59] was employed to demarcate the left atrial endocardial surface (which coincides with 

the boundaries of the LABP chamber). This automatic step was subsequently followed by an expert 

observer manual delineation of the left atrial wall epicardial surface. While performing this non-

automatic step, extra care was taken to exclude nearby enhanced structures (such as mitral valve 

leaflets, aorta walls, and navigator-induced artefacts) not related to left atrial fibrosis or ablation 

lesion. To account for the intra- and inter-operator variability in this step (due to anatomic variability 

and partial volume effects), it was arranged to employ a consensus decision-making process. That is 

to say, the finalized version of every segmented left atrial wall was collaboratively generated by a 

group of three specialists in CMR of the LA that convened for this purpose. The whole left atrial wall 

segmentation was carried out using a free open-source segmentation software (ITK-SNAP) [60].  

 

2.5 Analyses 

 Initially, we aimed at qualitatively evaluating the accuracy of the learnt enhancement 

segmentation rule on the first-seen (testing) data-sets, by overlaying the enhanced tissue 

segmentation results upon the original LGE CMR transverse plane slices. 
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 Due to the fact that the segmentation of enhancement in LGE CMR data-sets of AF patients 

is a complicated task that poses many challenges, the visual assessment of the results based on 

brightness levels is not alone sufficient. At the same time, both left atrial fibrosis and ablation injury 

(at three months post-ablation) have been shown [49,61-66] to predict an impairment of atrial 

conduction/electric activation at the microscopic level. Therefore, there should be a correspondence 

between the highly current-resistant fibrotic deposits or ablation lesion sets (as these two are 

visualized by LGE CMR) and regions of low myocardial voltage. In the light of the above and with the 

view to improving the soundness of the results of this study, we set out to corroborate the proposed 

LGE CMR enhancement classification technique (apart from using visual inspection criteria based on 

brightness levels) also by using the unique endocardial bipolar voltage map that was available for 

one patient of this study and was acquired by a minimally-invasive electro-anatomic mapping (EAM) 

system. As well as they allow for the indirect assessment of left atrial substrate through voltage 

tissue characterization, EAM systems [67] also make provision for 3D cardiac chamber 

reconstruction, accurate navigation in the LA, assessment of adequate energy delivery etc. For this 

reason, EAM systems are regarded as the linchpin of modern complex AF ablations, and  are 

routinely employed by ~90% of the centres [10]. 

 In addition, we also sought to rate the proposed enhancement segmentation technique: (i) 

In terms of the measured extent of the left atrial wall structural remodeling (fibrosis). (ii) By looking 

into the suggested method's capacity for reflecting ablation lesion patterns. To this end, we used 3D 

volume renderings of the classified enhancement superimposed on the segmented LABP to test the 

hypothesis that our enhancement segmentation technique (when it is applied to three months post-

ablation LGE CMR data-sets) can recreate the (aimed) ablation lesions in a faithful way.  

 Finally, we investigated how the various threshold levels proposed by other AF studies 

[18,19] (that also relied on reference regions from within the LABP) fare in LGE CMR data-sets 

acquired at our center. 
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3. Results 

 Four pre-ablation LGE CMR data-sets were excluded by the CMR expert due to poor or non-

diagnostic image quality. With regard to the automatic endocardial surface segmentation step, 

manual editing of the result of the active contour evolution was performed wherever there was a 

need.  

 The enhancement normalized intensity thresholds that were selected by the expert 

observers during the training for pre-ablation and three months post-ablation LGE CMR data-sets are 

given in Table 1 and Table 2, respectively. From these results, global thresholds of TPRE = 1 1/4 (for 

pre-ablation LGE CMR data-sets) and TPOST = 1 5/8 (for data-sets acquired at three months post-

ablation) best predict enhanced tissue for AF patients studied at out center. The three cross-

validation rounds produced similar results. Therefore, these thresholds levels were used for all 

further analyses.    

 A qualitative evaluation of the predictive power of the chosen thresholds on first-seen 

(testing) LGE CMR data-sets is provided in Fig. 1 and Fig. 2, where the enhanced tissue segmentation 

results have been overlaid upon the original transverse plane slices of ''testing'' LGE CMR data-sets. 

It was generally observed that the proposed thresholds resulted in enhancement classifications that 

are in good concordance with visual perception for both pre-ablation (baseline) and three months 

post-ablation data-sets. 

 An additional substantiation of our segmentation method against the unique endocardial 

bipolar voltage map that was available for one patient of this study is demonstrated in Fig. 3. A 

visually appreciable correlation between left atrial regions of classified fibrotic deposit (in a pre-

ablation LGE CMR) and areas of low (i.e., < 0.5mV) bipolar endocardial voltage can be seen. 
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 By surveying the baseline scans of this study, we found that the mean relative extent of the 

measured native fibrosis associated with AF was 26.14 ± 11.17 % (Fig. 4, Table 3). This figure falls 

within the expected [13] range for the specific arrhythmia phenotype.  

 The 3D visualization of the three months post-ablation LGE CMR data-sets of this study 

showed that the revealed distributions of classified enhancement typically emulated the ablation 

lesion patterns (acquired after implementing the ablation strategies described in Section 2.2). A 

representative example is shown in Fig. 5, where (the 3D volume rendering of) the classified 

enhancement distribution comprises encirclement of each ipsilateral pair of pulmonary veins at their 

antra, as well as a linear pattern at the mitral isthmus.  

 As an interim summary, the results presented up to this point allowed us to reach the 

decision that any left atrial wall voxel i with normalized intensity NI(i) above TPRE = 1 1/4 in a baseline 

scan is defined as abnormal native fibrotic tissue, whereas any left atrial wall voxel i with normalized 

intensity NI(i) above TPOST = 1 5/8 in a three months post-ablation scan is classified as abnormal 

native fibrotic or AF ablation-related injured tissue. 

 Finally, comparisons of the proposed enhancement segmentation technique with other 

related papers [18,19] that suggested using different threshold levels for segmenting enhancement 

in LGE CMR data-sets of AF patients are shown in Fig. 6 and Fig. 7. The figures illustrate that, when it 

comes to LGE CMR data-sets acquired to our centre, our proposed thresholds conspicuously 

outperform those proposed in studies cited in [18] and [19]. 

 

 

4. Discussion - conclusions 

4.1 The main contribution 

 AF represents a major public health problem. Putting this abnormal heart condition in the 

disease rates comparison context, today everyone aged forty or over has a lifetime risk of 
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developing AF of at least one in four, compared, for example, with one in eight for breast cancer in 

women of the same age group [68,69]. On top of this, the AF prevalence is expected [3] to double by 

2050. Ablation treatment of AF is associated with modest outcomes. In order for LGE CMR to 

ameliorate the AF management, the ready availability of the accurate enhancement segmentation is 

required. However, the computer-aided classification of enhanced tissue in LGE CMR of AF is still an 

open question. This study was designed to retrospectively propose a fast automatic method that 

reliably distinguishes enhanced (abnormal) from non-enhanced (healthy) tissue within the left atrial 

wall of (baseline and three months post-ablation) LGE CMR data-sets of long-standing persistent AF 

patients studied at our centre. Detection and isolation of enhancement was achieved by employing 

thresholds benchmarked against the statistics of the entire LABP. On the whole, global normalized 

intensity threshold levels TPRE=1 1/4 and TPOST=1 5/8 were found to segment enhancement in data-

sets acquired pre-ablation and at three months post-ablation, respectively. The proposed 

segmentation algorithm combines the following advantages: (i) It is self-regulated without requiring 

expert user interaction, (ii) it is simple to implement, and runs in a couple of seconds on a typical PC 

allowing fast availability of results, (iii) it eliminates observer bias, (iv) it provides reproducible 

results, (v) it does not require manual outlining of an additional healthy myocardial region, (vi) it has 

been developed particularly for the LA, (vii) it produces realistic estimates regardless mean 

enhancement intensity and image contrast ratio.  

 The predictive power of the proposed enhancement segmentation rule was verified on first-

seen (testing) LGE CMR data-sets through the cross-validation mechanism. This tool allows for 

minimally biased results (by preserving the total blinding of the testing data-sets from the training 

procedure), while at the same time uses the available data as effectively as possible. Apart from 

corroborating the segmentation results by relying on visual inspection of LGE CMR brightness levels, 

we also verified the proposed technique by using the unique endocardial bipolar voltage map that 

was available for one patient of this study. The observation of a marked correspondence between 
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the fibrotic deposits (classified by our segmentation technique) and regions of low myocardial 

voltage (measured with an EAM system) boosts further the employment of non-invasive LGE CMR in 

clinical practice as a guidance tool on left atrial substrate characterization. In addition, by measuring 

the extent of classified fibrosis and correlating it with the studied arrhythmia phenotype, we showed 

that the proposed segmentation technique favours the settlement of the link between the degree of 

fibrosis and the disease severity in AF [13]. This type of measurement is also key for noninvasively 

identifying patients that are unlikely to benefit from ablation. Furthermore, the suggested method's 

capacity for reflecting the expected ablation lesion patterns was demonstrated by using 3D volume 

rendering techniques. Such knowledge could prove useful in pinpointing ablation line gaps and 

guiding repeat operations. All in all, the proposed segmentation technique: (i) Has great potential for 

successful employment in the AF management within our centre, and (ii) provides a highly desirable 

(according to the present status of the related literature) validation of the LGE CMR technique for AF 

studies.  

 

4.2 Global versus patient-specific thresholding 

 LGE CMR data-sets from AF patients are highly variable with respect to image noise, 

contrast, and mean enhancement intensity. To address this problem, some studies [20] have 

suggested employing a patient-specific (rather than a fixed) threshold level. However, we found in 

this study that the selected fixed threshold levels applied well to all LGE CMR data-sets regardless 

image contrast ratio and mean enhancement intensity. A possible explanation for this is that the 

normalization of the left atrial wall intensities (against the statistics of the signal intensity 

distribution of the voxels that constitute the LABP in the same data-set) appears to have 

compensated for the contrast and mean enhancement intensity variability.  

 

4.3 Enhancement segmentation: post-ablation as opposed to pre-ablation data-sets 
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 In this study, there was a sense of greater confidence in the segmentation results of post-

ablation rather than baseline LGE CMR data-sets. This is in accordance with the surrounding 

circumstances since the native pre-existent fibrosis is known [26] to have a more diffuse distribution, 

as opposed to the iatrogenic scarring which exhibits a focal pattern. However, the three months 

post-ablation LGE CMR data-sets of AF patients are expected to involve enhancement that 

corresponds to both native fibrotic tissue and radiofrequency energy application lesion sets. It is our 

opinion that at the moment it is very challenging to distinguish between these two types of 

enhancement that reside on a post-ablation data-set, despite the fact that the pre-procedural data-

sets are also available for these patients. The reasons for this are (i) the inaccessible/unpredictable 

intensity scaling (that takes place within the MR scanner before exporting the data) which results in 

the two types of enhancement having arbitrary and possibly common intensities, and  (ii) the two 

types of enhancement are contiguous. Finally, it only makes things worse the fact that these two 

sources of enhancement sit at the opposite ends of a ring diameter and snarl at each other, since AF-

related fibrosis has been postulated to be a central component of arrhythmia maintenance, while, 

on the other hand, ablation-related scar aims at favouring freedom of arrhythmia.    

 

4.4 Left atrial wall segmentation 

 Segmentation of the left atrial wall is a crucial step before segmenting enhancement. The 

consensus manual delineation of the left atrial wall epicardial border is a downside of this study, as it 

is a time-consuming step taking up to one hour. Our decision to implement this step manually was 

based on the fact that fully automatic approaches at the moment result in unreliable left atrial wall 

segmentations and, as a result, they require significant manual feedback. In any case, this paper is 

concerned only with the classification of enhancement within the left atrial wall of AF patients; the 

determination of the left atrial wall boundaries is beyond the scope of this study. Even though our 

proposed enhancement classification technique was applied to left atrial walls that had been 
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segmented semi-automatically, it could also be executed with no modification within fully 

automatically segmented left atrial walls. 

 

4.5 Comparison with other papers 

 Another contribution of this paper is that we compare our technique with other related 

approaches that proposed different threshold levels (although they also relied on reference regions 

from within the LABP) for segmenting enhancement in LGE CMR data-sets of AF patients. The failure 

of threshold levels suggested by other papers was illustrated for data-sets acquired in our centre. A 

reason for this discrepancy may be the inter-centre variability in CMR acquisition parameters, such 

as the optimal timing of imaging after contrast administration, choice and ideal dosage of contrast 

agent, selection of the best TI etc. Another possibility is that the differences in the proposed 

thresholds arose out of regional variation in the reference region statistics. In particular, whereas 

this study employed the whole LABP, segmented directly for the LGE CMR image, the other two 

papers segmented the LABP from the 3D magnetic resonance angiography (MRA) sequence, and 

then registered this segmentation with the LGE CMR image. Finally, to account for the inherent 

spatial error (that occurred in the process of registering the non-electrocardiography-gated MRA 

sequence with the electrocardiography and respiratory motion gated free-breathing LGE sequence), 

the authors of [18] and [19] concluded their reference region by performing mathematical 

morphology shrinkage. Therefore, their reference region was most likely a smaller sub-region within 

the most central part of the LABP which (in our LGE CMR data-sets) was observed (Fig. 8) to have 

significantly different statistic measures (standard deviation) from the entire LABP.  

 To summarize, threshold levels employed by other centres may not be usable for clinical 

studies performed in our centre; instead, the operator would have to resort to threshold re-

adjustment in order to achieve accurate assessment of left atrial substrate, and prevent unnecessary 

ablation. Inter-centre differences in the CMR acquisition protocol and image analysis strategy 
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inevitably impede the selection of a universally optimal algorithm for segmentation of enhancement 

in AF studies. 

 

4.6 Other limitations of this study 

 The major limitation of this study was the relatively small sample size. Therefore, further 

larger studies are required to confirm these results. Furthermore, only one voltage map was 

available for validation. Another limitation of this paper is that few of the criteria used to assess the 

proposed technique are qualitative, mainly due to the lack of a reliable gold standard ground truth. 

While qualitative criteria have been rich in communicating the message, it is recognized, at the same 

time, that quantitative tools would have allowed for much greater precision and objectiveness in 

comparisons. 

 

4.7 In conclusion 

 We proposed a method to distinguish enhanced (abnormal) from non-enhanced (healthy) 

tissue within the left atrial wall of (pre-ablation and 3 months post-ablation) LGE CMR data-sets from 

long-standing persistent AF patients studied at our centre. Segmentation of enhancement was 

achieved by employing thresholds benchmarked against the statistics of the whole LABP. Global 

normalized intensity threshold levels TPRE=1 1/4 and TPOST=1 5/8 were found to segment 

enhancement in data-sets acquired pre-ablation and at three months post-ablation, respectively. 

The proposed segmentation algorithm combines the following advantages: (i) It is self-regulated, (ii) 

it is simple to implement allowing fast availability of results, (iii) it eliminates observer bias, (iv) it 

provides reproducible results, (v) it does not require manual outlining of an additional healthy 

myocardial region, (vi) it has been developed particularly for the left atrium, (vii) it produces realistic 

estimates regardless mean enhancement intensity and image contrast ratio. The segmentation 

results were corroborated by relying on visual inspection of brightness levels of LGE CMR images and 
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one endocardial bipolar voltage map. The measured extent of pre-ablation fibrosis fell within the 

normal range for the specific arrhythmia phenotype. 3D volume renderings of segmented post-

ablation enhancement emulated the expected ablation lesion patterns. The proposed technique has 

great potential for successful employment in the AF management within our centre. The results 

provide a highly desirable (according to the present status of the related literature) validation of the 

LGE CMR technique for AF studies. The cut-off levels employed by other centres may not be usable 

for clinical studies performed in our centre. Inter-centre differences in the CMR acquisition protocol 

and image analysis strategy inevitably impede the selection of a universally optimal algorithm for 

segmentation of enhancement in AF studies. Further larger studies are required to confirm the 

results of this paper. 
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9. Figure Legends 

Figure 1 

Title: Pre-ablation segmentation results. 

Legend: Enhancement segmentation results on testing baseline LGE CMR data-sets of two randomly 

selected long-standing persistent AF patients (top: patient 1, bottom: patient 2). Left: original data-
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sets, middle: segmented left atrial walls, right: classification results. A=anterior, P=posterior, L=left, 

R=right.  

 

Figure 2 

Title: Post-ablation segmentation results. 

Legend: Enhancement segmentation results on testing three months post-ablation LGE CMR data-

sets of two randomly selected long-standing persistent AF patients (top: patient 1, bottom: patient 

2). Left: original data-sets, middle: segmented left atrial walls, right: classification results. A=anterior, 

P=posterior, L=left, R=right. 

 

Figure 3 

Title: CMR versus invasive electro-physiology. 

Legend: Juxtaposition of 3D postero-anterior (PA) views of the left atrial wall tissue classified as 

''pre-existent fibrosis'' [left, in gray –obtained from a baseline LGE CMR scan and projected onto the 

segmented left atrial blood-pool (LABP), shown in pink] and the registered bipolar voltage map [right 

–measured with a NavX EAM system: Healthy left atrial wall tissue is showing in purple, while gray 

represents low voltage tissue]. CMR scar map compares well to the corresponding endocardial 

bipolar voltage map. 

 

Figure 4 

Title: The relative extent of native fibrosis. 

Legend: The relative extent of native fibrosis as measured from the baseline LGE CMR data-sets of 

the long-standing persistent AF patients of this study. Fibrotic tissue extent is expressed as a 

percentage of the overall left atrial wall volume.  

 

Figure 5 
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Title: 3D volume renderings of the ablation lesions. 

Legend: 3D volume renderings of the classified enhancement (in blue –obtained from a three 

months post-ablation LGE CMR data-set) overlaid upon the segmented left atrial blood-pool (LABP). 

Enhancement distribution comprised encirclement of each ipsilateral pair of pulmonary veins at 

their antra, as well as a linear pattern at the mitral isthmus, as might be expected by the respective 

ablation techniques. RSPV = right superior pulmonary vein, RIPV = right inferior pulmonary vein, 

LSPV = left superior pulmonary vein, LIPV = left inferior pulmonary vein, LAA = left atrial appendage. 

 

Figure 6 

Title: Comparison with threshold levels proposed by other studies on pre-ablation data-sets. 

Legend: Comparison of enhancement segmentation techniques on a base-line LGE CMR data-set of a 

long-standing persistent AF patient. The threshold levels proposed in other studies (TPRE = 3 for study 

cited in [18], and TPRE = 4 for study cited in [19]) led to gross underestimations of the enhancement. 

A=anterior, P=posterior, L=left, R=right.  

 

Figure 7 

Title: Comparison with threshold levels proposed by other studies on three months post-ablation 

data-sets. 

Legend: Comparison of enhancement segmentation techniques on a three months post-ablation LGE 

CMR data-set of a long-standing persistent AF patient. The threshold level proposed in another study 

(TPOST = 3 for study cited in [18]) led to gross underestimation of the enhancement. A=anterior, 

P=posterior, L=left, R=right. 

 

Figure 8 

Title: Regional variation in the reference region statistics. 
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Legend: Regional variation in the reference region statistics. The borders of the reference region 

within the left atrial blood-pool (LABP) are drawn in yellow. By choosing a larger area, the standard 

deviation of the signal intensity distribution also increased. 

 

 

10. Tables 

Table 1 

Title: Pre-ablation threshold levels selected by expert observers. 

Legend: The normalized intensity levels that were selected by the expert observers to mark out the 

lower boundary of enhanced tissue in the training (N=7) pre-ablation LGE CMR data-sets. Possible 

threshold levels ranged from 1 to 6 in increments of 1/8.    

 

 Observer 1 Observer 2 Observer 3 

Patient 1 1 1/4 1 1/4 1 1/4 

Patient 2 1 1/8 1 1/4 1 1/8 

Patient 3 1 1/4 1 1/4 1 1/4 

Patient 4 1 1/4 1 1/4 1 3/8 

Patient 5 1 1/4 1 1/4 1 1/4 

Patient 6 1 1/4 1 3/8 1 3/8 

Patient 7 1 1/4 1 1/4 1 1/4 

 

 

Table 2 

Title: 3 months post-ablation threshold levels selected by expert observers. 
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Legend: The normalized intensity levels that were selected by the expert observers to mark out the 

lower boundary of enhanced tissue in the training (N=10) three months post-ablation LGE CMR data-

sets. Possible threshold levels ranged from 1 to 6 in increments of 1/8. 

 

 Observer 1 Observer 2 Observer 3 

Patient 1 1 5/8 1 5/8 1 5/8 

Patient 2 1 5/8 1 5/8 1 5/8 

Patient 3 1 4/8 1 5/8 1 4/8 

Patient 4 1 5/8 1 5/8 1 5/8 

Patient 5 1 6/8 1 5/8 1 5/8 

Patient 6 1 5/8 1 5/8 1 5/8 

Patient 7 1 5/8 1 5/8 1 5/8 

Patient 8 1 5/8 1 5/8 1 5/8 

Patient 9 1 5/8 1 6/8 1 6/8 

Patient 10 1 5/8 1 5/8 1 5/8 

 

 

Table 3 

Title: Group statistics of the relative extent of native fibrosis. 

Legend: The mean and standard deviation of the relative extent of native fibrosis, summarizing  the 

measurements from the baseline LGE CMR data-sets of the long-standing persistent AF patients of 

this study. Fibrotic tissue extent is expressed as a percentage of the overall left atrial wall volume. 

 

 Mean Standard Deviation 
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Relative extent of native fibrosis (%) 26.14 11.17 
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