447 research outputs found

    Energy States of Colored Particle in a Chromomagnetic Field

    Get PDF
    The unitary transformation, which diagonalizes squared Dirac equation in a constant chromomagnetic field is found. Applying this transformation, we find the eigenfunctions of diagonalized Hamiltonian, that describe the states with definite value of energy and call them energy states. It is pointed out that, the energy states are determined by the color interaction term of the particle with the background chromofield and this term is responsible for the splitting of the energy spectrum. We construct supercharge operators for the diagonal Hamiltonian, that ensure the superpartner property of the energy states.Comment: 25 pages, some calculation details have been removed, typos correcte

    Comparison of Differential Pulse Voltammetry (DPV)-a new method of carbamazepine analysis-with Fluorescence Polarization Immunoassay (FPIA)

    Get PDF
    Carbamazepine is a widely used anti-epileptic drug with narrow therapeutic range. Many methods have been developed for monitoring the serum drug level. Differential pulse voltammetry (DPV), an electrochemical method advantaged by simple, inexpensive, and relatively short analysis time, has recently been developed for carbamazepine detection. We used a newly developed DPV method with glassy carbon as a working electrode to determine the carbamazepine level. The performance of DPV is compared with the widely used fluorescence polarization immunoassay (FPIA) technique in precision, accuracy, linearity and detection limit. The precision, linearity and accuracy of the DPV and FPIA techniques were comparable at most clinical used levels. The detection limit was 1 mu g/mL for the DPV technique and 0.5 mu g/mL for the FPIA technique. The performance of the DPV technique was within the FDA guidelines for bioanalytical methods, which ensures the clinical applicability of the DPV technique. The DPV technique may have the potential to be a good alternative for carbamazepine analysis

    Higgs-Boson Production Induced by Bottom Quarks

    Full text link
    Bottom quark-induced processes are responsible for a large fraction of the LHC discovery potential, in particular for supersymmetric Higgs bosons. Recently, the discrepancy between exclusive and inclusive Higgs boson production rates has been linked to the choice of an appropriate bottom factorization scale. We investigate the process kinematics at hadron colliders and show that it leads to a considerable decrease in the bottom factorization scale. This effect is the missing piece needed to understand the corresponding higher order results. Our results hold generally for charged and for neutral Higgs boson production at the LHC as well as at the Tevatron. The situation is different for single top quark production, where we find no sizeable suppression of the factorization scale. Turning the argument around, we can specify how large the collinear logarithms are, which can be resummed using the bottom parton picture.Comment: 18 page

    Charged Higgs Boson Production in Bottom-Gluon Fusion

    Full text link
    We compute the complete next-to-leading order SUSY-QCD corrections for the associated production of a charged Higgs boson with a top quark via bottom-gluon fusion. We investigate the applicability of the bottom parton description in detail. The higher order corrections can be split into real and virtual corrections for a general two Higgs doublet model and into additional massive supersymmetric loop contributions. We find that the perturbative behavior is well under control. The supersymmetric contributions consist of the universal bottom Yukawa coupling corrections and non-factorizable diagrams. Over most of the relevant supersymmetric parameter space the Yukawa coupling corrections are sizeable, while the remaining supersymmetric loop contributions are negligible.Comment: 18 pages, v2: some discussions added, v3: published versio

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe

    Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV

    Get PDF
    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1 sigma. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is estimated to be 1.8 sigma. More data are required to ascertain the origin of this excess.Comment: Submitted to Physics Letters

    Measurement of the Lambda(b) cross section and the anti-Lambda(b) to Lambda(b) ratio with Lambda(b) to J/Psi Lambda decays in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    The Lambda(b) differential production cross section and the cross section ratio anti-Lambda(b)/Lambda(b) are measured as functions of transverse momentum pt(Lambda(b)) and rapidity abs(y(Lambda(b))) in pp collisions at sqrt(s) = 7 TeV using data collected by the CMS experiment at the LHC. The measurements are based on Lambda(b) decays reconstructed in the exclusive final state J/Psi Lambda, with the subsequent decays J/Psi to an opposite-sign muon pair and Lambda to proton pion, using a data sample corresponding to an integrated luminosity of 1.9 inverse femtobarns. The product of the cross section times the branching ratio for Lambda(b) to J/Psi Lambda versus pt(Lambda(b)) falls faster than that of b mesons. The measured value of the cross section times the branching ratio for pt(Lambda(b)) > 10 GeV and abs(y(Lambda(b))) < 2.0 is 1.06 +/- 0.06 +/- 0.12 nb, and the integrated cross section ratio for anti-Lambda(b)/Lambda(b) is 1.02 +/- 0.07 +/- 0.09, where the uncertainties are statistical and systematic, respectively.Comment: Submitted to Physics Letters

    Search for new physics in events with opposite-sign leptons, jets, and missing transverse energy in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search is presented for physics beyond the standard model (BSM) in final states with a pair of opposite-sign isolated leptons accompanied by jets and missing transverse energy. The search uses LHC data recorded at a center-of-mass energy sqrt(s) = 7 TeV with the CMS detector, corresponding to an integrated luminosity of approximately 5 inverse femtobarns. Two complementary search strategies are employed. The first probes models with a specific dilepton production mechanism that leads to a characteristic kinematic edge in the dilepton mass distribution. The second strategy probes models of dilepton production with heavy, colored objects that decay to final states including invisible particles, leading to very large hadronic activity and missing transverse energy. No evidence for an event yield in excess of the standard model expectations is found. Upper limits on the BSM contributions to the signal regions are deduced from the results, which are used to exclude a region of the parameter space of the constrained minimal supersymmetric extension of the standard model. Additional information related to detector efficiencies and response is provided to allow testing specific models of BSM physics not considered in this paper.Comment: Replaced with published version. Added journal reference and DO

    Measurement of isolated photon production in pp and PbPb collisions at sqrt(sNN) = 2.76 TeV

    Get PDF
    Isolated photon production is measured in proton-proton and lead-lead collisions at nucleon-nucleon centre-of-mass energies of 2.76 TeV in the pseudorapidity range |eta|<1.44 and transverse energies ET between 20 and 80 GeV with the CMS detector at the LHC. The measured ET spectra are found to be in good agreement with next-to-leading-order perturbative QCD predictions. The ratio of PbPb to pp isolated photon ET-differential yields, scaled by the number of incoherent nucleon-nucleon collisions, is consistent with unity for all PbPb reaction centralities.Comment: Submitted to Physics Letters

    Analytical studies of Hawking radiation and quasinormal modes in rotating linear dilatonic black hole

    Full text link
    The rotating linear dilatonic black hole is an asymptotically non-flat solution to Einstein-Maxwell-Dilaton-Axion gravity theory due to the existence of non-trivial matter fields. We have analytically studied the wave equation of scalar field in this background and shown that the radial wave equation can be solved in terms of hypergeometric function. By determining the ingoing and the outgoing fluxes at the asymptotic infinity, we have found the analytical expressions for reflection coefficient and greybody factor for certain scalar modes. In the high frequency regime, we obtain the Hawking temperature by comparing the blackbody spectrum with the radiation spectrum resulting from reflection coefficient. It is shown that the Hawking temperature, which depends only on the linear dilatonic background parameter, does not agree with the temperature calculated from surface gravity. At last, the quasinormal modes of scalar field perturbation are presented, which shows that the rotating linear dilationic black hole is unstable for certain modes apart from the superradiant modes.Comment: 7 pages, 2 figures Comments are welcom
    corecore