1,366 research outputs found
Non-perturbative QEG Corrections to the Yang-Mills Beta Function
We discuss the non-perturbative renormalization group evolution of the gauge
coupling constant by using a truncated form of the functional flow equation for
the effective average action of the Yang-Mills-gravity system. Our result is
consistent with the conjecture that Quantum Einstein Gravity (QEG) is
asymptotically safe and has a vanishing gauge coupling constant at the
non-trivial fixed point.Comment: To appear in the proceedings of CORFU 200
Towards a formalism for mapping the spacetimes of massive compact objects: Bumpy black holes and their orbits
Observations have established that extremely compact, massive objects are
common in the universe. It is generally accepted that these objects are black
holes. As observations improve, it becomes possible to test this hypothesis in
ever greater detail. In particular, it is or will be possible to measure the
properties of orbits deep in the strong field of a black hole candidate (using
x-ray timing or with gravitational-waves) and to test whether they have the
characteristics of black hole orbits in general relativity. Such measurements
can be used to map the spacetime of a massive compact object, testing whether
the object's multipoles satisfy the strict constraints of the black hole
hypothesis. Such a test requires that we compare against objects with the
``wrong'' multipole structure. In this paper, we present tools for constructing
bumpy black holes: objects that are almost black holes, but that have some
multipoles with the wrong value. The spacetimes which we present are good deep
into the strong field of the object -- we do not use a large r expansion,
except to make contact with weak field intuition. Also, our spacetimes reduce
to the black hole spacetimes of general relativity when the ``bumpiness'' is
set to zero. We propose bumpy black holes as the foundation for a null
experiment: if black hole candidates are the black holes of general relativity,
their bumpiness should be zero. By comparing orbits in a bumpy spacetime with
those of an astrophysical source, observations should be able to test this
hypothesis, stringently testing whether they are the black holes of general
relativity. (Abridged)Comment: 16 pages + 2 appendices + 3 figures. Submitted to PR
Covariant anomaly and Hawking radiation from the modified black hole in the rainbow gravity theory
Recently, Banerjee and Kulkarni (R. Banerjee, S. Kulkarni, arXiv:0707.2449
[hep-th]) suggested that it is conceptually clean and economical to use only
the covariant anomaly to derive Hawking radiation from a black hole. Based upon
this simplified formalism, we apply the covariant anomaly cancellation method
to investigate Hawking radiation from a modified Schwarzschild black hole in
the theory of rainbow gravity. Hawking temperature of the gravity's rainbow
black hole is derived from the energy-momentum flux by requiring it to cancel
the covariant gravitational anomaly at the horizon. We stress that this
temperature is exactly the same as that calculated by the method of cancelling
the consistent anomaly.Comment: 5 page
Black Hole Entropy: From Shannon to Bekenstein
In this note we have applied directly the Shannon formula for information
theory entropy to derive the Black Hole (Bekenstein-Hawking) entropy. Our
analysis is semi-classical in nature since we use the (recently proposed [8])
quantum mechanical near horizon mode functions to compute the tunneling
probability that goes in to the Shannon formula, following the general idea of
[5]. Our framework conforms to the information theoretic origin of Black Hole
entropy, as originally proposed by Bekenstein.Comment: 9 pages Latex, Comments are welcome; Thoroughly revised version,
reference and acknowledgements sections enlarged, numerical error in final
result corrected, no major changes, to appear in IJT
Anomaly analysis of Hawking radiation from Kaluza-Klein black hole with squashed horizon
Considering gravitational and gauge anomalies at the horizon, a new method
that to derive Hawking radiations from black holes has been developed by
Wilczek et al. In this paper, we apply this method to non-rotating and rotating
Kaluza-Klein black holes with squashed horizon, respectively. For the rotating
case, we found that, after the dimensional reduction, an effective U(1) gauge
field is generated by an angular isometry. The results show that the gauge
current and energy-momentum tensor fluxes are exactly equivalent to Hawking
radiation from the event horizon.Comment: 15 pages, no figures, the improved version, accepted by Eur. Phys. J.
Horizons, Constraints, and Black Hole Entropy
Black hole entropy appears to be ``universal''--many independent
calculations, involving models with very different microscopic degrees of
freedom, all yield the same density of states. I discuss the proposal that this
universality comes from the behavior of the underlying symmetries of the
classical theory. To impose the condition that a black hole be present, we must
partially break the classical symmetries of general relativity, and the
resulting Goldstone boson-like degrees of freedom may account for the
Bekenstein-Hawking entropy. In particular, I demonstrate that the imposition of
a ``stretched horizon'' constraint modifies the algebra of symmetries at the
horizon, allowing the use of standard conformal field theory techniques to
determine the asymptotic density of states. The results reproduce the
Bekenstein-Hawking entropy without any need for detailed assumptions about the
microscopic theory.Comment: 16 pages, talk given at the "Peyresq Physics 10 Meeting on Micro and
Macro structures of spacetime
Neutrino masses: From fantasy to facts
Theory suggests the existence of neutrino masses, but little more. Facts are
coming close to reveal our fantasy: solar and atmospheric neutrino data
strongly indicate the need for neutrino conversions, while LSND provides an
intriguing hint. The simplest ways to reconcile these data in terms of neutrino
oscillations invoke a light sterile neutrino in addition to the three active
ones. Out of the four neutrinos, two are maximally-mixed and lie at the LSND
scale, while the others are at the solar mass scale. These schemes can be
distinguished at neutral-current-sensitive solar & atmospheric neutrino
experiments. I discuss the simplest theoretical scenarios, where the lightness
of the sterile neutrino, the nearly maximal atmospheric neutrino mixing, and
the generation of & all follow
naturally from the assumed lepton-number symmetry and its breaking. Although
the most likely interpretation of the present data is in terms of
neutrino-mass-induced oscillations, one still has room for alternative
explanations, such as flavour changing neutrino interactions, with no need for
neutrino mass or mixing. Such flavour violating transitions arise in theories
with strictly massless neutrinos, and may lead to other sizeable flavour
non-conservation effects, such as , conversion in
nuclei, unaccompanied by neutrino-less double beta decay.Comment: 33 pages, latex, 16 figures. Invited Talk at Ioannina Conference,
Symmetries in Intermediate High Energy Physics and its Applications, Oct.
1998, to be published by Springer Tracts in Modern Physics. Festschrift in
Honour of John Vergados' 60th Birthda
Hawking Radiation of Black Holes in Infrared Modified Ho\v{r}ava-Lifshitz Gravity
We study the Hawking radiation of the spherically symmetric, asymptotically
flat black holes in the infrared modified Horava-Lifshitz gravity by applying
the methods of covariant anomaly cancellation and effective action, as well as
the approach of Damour-Ruffini-Sannan's. These black holes behave as the usual
Schwarzschild ones of the general relativity when the radial distance is very
large. We also extend the method of covariant anomaly cancellation to derive
the Hawking temperature of the spherically symmetric, asymptotically AdS black
holes that represent the analogues of the Schwarzschild AdS ones.Comment: no figures, 16 pages,accepted by EPJ
Fitting the integrated Spectral Energy Distributions of Galaxies
Fitting the spectral energy distributions (SEDs) of galaxies is an almost
universally used technique that has matured significantly in the last decade.
Model predictions and fitting procedures have improved significantly over this
time, attempting to keep up with the vastly increased volume and quality of
available data. We review here the field of SED fitting, describing the
modelling of ultraviolet to infrared galaxy SEDs, the creation of
multiwavelength data sets, and the methods used to fit model SEDs to observed
galaxy data sets. We touch upon the achievements and challenges in the major
ingredients of SED fitting, with a special emphasis on describing the interplay
between the quality of the available data, the quality of the available models,
and the best fitting technique to use in order to obtain a realistic
measurement as well as realistic uncertainties. We conclude that SED fitting
can be used effectively to derive a range of physical properties of galaxies,
such as redshift, stellar masses, star formation rates, dust masses, and
metallicities, with care taken not to over-interpret the available data. Yet
there still exist many issues such as estimating the age of the oldest stars in
a galaxy, finer details ofdust properties and dust-star geometry, and the
influences of poorly understood, luminous stellar types and phases. The
challenge for the coming years will be to improve both the models and the
observational data sets to resolve these uncertainties. The present review will
be made available on an interactive, moderated web page (sedfitting.org), where
the community can access and change the text. The intention is to expand the
text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics &
Space Scienc
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
- …
