177 research outputs found

    Inflation and Holography in String Theory

    Full text link
    The encoding of an inflating patch of space-time in terms of a dual theory is discussed. Following Bousso's interpretation of the holographic principle, we find that those are generically described not by states in the dual theory but by density matrices. We try to implement this idea on simple deformations of the AdS/CFT examples, and an argument is given as to why inflation is so elusive to string theory.Comment: 15 pages, LaTeX, 2 figures. Uses psbox.te

    Topological Defects as Seeds for Eternal Inflation

    Full text link
    We investigate the global structure of inflationary universe both by analytical methods and by computer simulations of stochastic processes in the early Universe. We show that the global structure of the universe depends crucially on the mechanism of inflation. In the simplest models of chaotic inflation the Universe looks like a sea of thermalized phase surrounding permanently self-reproducing inflationary domains. In the theories where inflation occurs near a local extremum of the effective potential corresponding to a metastable state, the Universe looks like de Sitter space surrounding islands of thermalized phase. A similar picture appears even if the state ϕ=0\phi = 0 is unstable but the effective potential has a discrete symmetry ϕ→=−ϕ\phi \to =-\phi. In this case the Universe becomes divided into domains containing different phases. These domains will be separated from each other by domain walls. However, unlike ordinary domain walls, these domain walls will inflate, and their thickness will exponentially grow. In the theories with continuous symmetries inflation generates exponentially expanding strings and monopoles surrounded by thermalized phase. Inflating topological defects will be stable, and they will unceasingly produce new inflating topological defects. This means that topological defects may play a role of indestructible seeds for eternal inflation.Comment: 21 pages, 17 figures (not included), Stanford University preprint SU--ITP--94--

    D-brane anti-D-brane effective action and brane interaction in open string channel

    Full text link
    We construct the effective action of a DpD_p-brane-anti-DpD_p-brane system by making use of the non-abelian extension of tachyonic DBI action. We succeed the construction by restricting the Chan-Paton factors of two non-BPS DpD_p-branes in the action to the Chan-Paton factors of a DpDˉpD_p\bar{D}_p system. For the special case that both branes are coincident, the action reduces to the one proposed by A. Sen. \\The effective DpDˉpD_p\bar{D}_p potential indicates that when branes separation is larger than the string length scale, there are two minima in the tachyon direction. As branes move toward each other under the gravitational force, the tachyon tunneling from false to true vacuum may make a bubble formation followed by a classical evolution of the bubble. On the other hand, when branes separation is smaller than the string length scale, the potential shows one maximum and one minimum. In this case, a homogeneous tachyon rolling in real time makes an attractive potential for the branes distance. This classical force is speculated to be the effective force between the two branes.Comment: Latex, 14 pages, 1 figure, the version appears in JHE

    The First Magnetic Fields

    Full text link
    We review current ideas on the origin of galactic and extragalactic magnetic fields. We begin by summarizing observations of magnetic fields at cosmological redshifts and on cosmological scales. These observations translate into constraints on the strength and scale magnetic fields must have during the early stages of galaxy formation in order to seed the galactic dynamo. We examine mechanisms for the generation of magnetic fields that operate prior during inflation and during subsequent phase transitions such as electroweak symmetry breaking and the quark-hadron phase transition. The implications of strong primordial magnetic fields for the reionization epoch as well as the first generation of stars is discussed in detail. The exotic, early-Universe mechanisms are contrasted with astrophysical processes that generate fields after recombination. For example, a Biermann-type battery can operate in a proto-galaxy during the early stages of structure formation. Moreover, magnetic fields in either an early generation of stars or active galactic nuclei can be dispersed into the intergalactic medium.Comment: Accepted for publication in Space Science Reviews. Pdf can be also downloaded from http://canopus.cnu.ac.kr/ryu/cosmic-mag1.pd

    Big Bang Baryogenesis

    Full text link
    An overview of baryogenesis in the early Universe is presented. The standard big bang model including big bang nucleosynthesis and inflation is breifly reviewed. Three basic models for baryogenesis will be developed: The ``standard" out-of-equilibrium decay model; the decay of scalar consensates along flat directions in supersymmetric models; and lepto-baryogenesis, which is the conversion of a lepton asymmetry into a baryon asymmetry via non-perturbative electroweak interactions.Comment: 36 pages, LaTeX, UMN-TH-1249, Lectures given at the 33rd International Winter School on Nuclear and Particle Physics, ``Matter Under Extreme Conditions", Feb. 27 - March 5 1994, Schladming Austri

    Search for flavour-changing neutral currents in processes with one top quark and a photon using 81 fb⁻Âč of pp collisions at \sqrts = 13 TeV with the ATLAS experiment

    Get PDF
    A search for flavour-changing neutral current (FCNC) events via the coupling of a top quark, a photon, and an up or charm quark is presented using 81 fb−1 of proton–proton collision data taken at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. Events with a photon, an electron or muon, a b-tagged jet, and missing transverse momentum are selected. A neural network based on kinematic variables differentiates between events from signal and background processes. The data are consistent with the background-only hypothesis, and limits are set on the strength of the tqÎł coupling in an effective field theory. These are also interpreted as 95% CL upper limits on the cross section for FCNC tÎł production via a left-handed (right-handed) tuÎł coupling of 36 fb (78 fb) and on the branching ratio for t→γu of 2.8×10−5 (6.1×10−5). In addition, they are interpreted as 95% CL upper limits on the cross section for FCNC tÎł production via a left-handed (right-handed) tcÎł coupling of 40 fb (33 fb) and on the branching ratio for t→γc of 22×10−5 (18×10−5). © 2019 The Author(s

    Evaluation of skin absorption of drugs from topical and transdermal formulations

    Full text link

    Study of Z → llγ decays at √s = 8 TeV with the ATLAS detector

    Get PDF
    This paper presents a study of Z → llγ decays with the ATLAS detector at the Large Hadron Collider. The analysis uses a proton–proton data sample corresponding to an integrated luminosity of 20.2 fb−1 collected at a centre-ofmass energy √s = 8 TeV. Integrated fiducial cross-sections together with normalised differential fiducial cross-sections, sensitive to the kinematics of final-state QED radiation, are obtained. The results are found to be in agreement with stateof-the-art predictions for final-state QED radiation. First measurements of Z → llγ γ decays are also reported

    Constraints on spin-0 dark matter mediators and invisible Higgs decays using ATLAS 13 TeV pp collision data with two top quarks and missing transverse momentum in the final state

    Get PDF
    This paper presents a statistical combination of searches targeting final states with two top quarks and invisible particles, characterised by the presence of zero, one or two leptons, at least one jet originating from a b-quark and missing transverse momentum. The analyses are searches for phenomena beyond the Standard Model consistent with the direct production of dark matter in pp collisions at the LHC, using 139 fb−1 of data collected with the ATLAS detector at a centre-of-mass energy of 13 TeV. The results are interpreted in terms of simplified dark matter models with a spin-0 scalar or pseudoscalar mediator particle. In addition, the results are interpreted in terms of upper limits on the Higgs boson invisible branching ratio, where the Higgs boson is produced according to the Standard Model in association with a pair of top quarks. For scalar (pseudoscalar) dark matter models, with all couplings set to unity, the statistical combination extends the mass range excluded by the best of the individual channels by 50 (25) GeV, excluding mediator masses up to 370 GeV. In addition, the statistical combination improves the expected coupling exclusion reach by 14% (24%), assuming a scalar (pseudoscalar) mediator mass of 10 GeV. An upper limit on the Higgs boson invisible branching ratio of 0.38 (0.30+0.13−0.09) is observed (expected) at 95% confidence level
    • 

    corecore