49 research outputs found

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)

    Get PDF
    [no abstract available

    The performance of the jet trigger for the ATLAS detector during 2011 data taking

    Get PDF
    The performance of the jet trigger for the ATLAS detector at the LHC during the 2011 data taking period is described. During 2011 the LHC provided proton–proton collisions with a centre-of-mass energy of 7 TeV and heavy ion collisions with a 2.76 TeV per nucleon–nucleon collision energy. The ATLAS trigger is a three level system designed to reduce the rate of events from the 40 MHz nominal maximum bunch crossing rate to the approximate 400 Hz which can be written to offline storage. The ATLAS jet trigger is the primary means for the online selection of events containing jets. Events are accepted by the trigger if they contain one or more jets above some transverse energy threshold. During 2011 data taking the jet trigger was fully efficient for jets with transverse energy above 25 GeV for triggers seeded randomly at Level 1. For triggers which require a jet to be identified at each of the three trigger levels, full efficiency is reached for offline jets with transverse energy above 60 GeV. Jets reconstructed in the final trigger level and corresponding to offline jets with transverse energy greater than 60 GeV, are reconstructed with a resolution in transverse energy with respect to offline jets, of better than 4 % in the central region and better than 2.5 % in the forward direction

    GW190814: gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object

    Get PDF
    We report the observation of a compact binary coalescence involving a 22.2–24.3 Me black hole and a compact object with a mass of 2.50–2.67 Me (all measurements quoted at the 90% credible level). The gravitational-wave signal, GW190814, was observed during LIGO’s and Virgo’s third observing run on 2019 August 14 at 21:10:39 UTC and has a signal-to-noise ratio of 25 in the three-detector network. The source was localized to 18.5 deg2 at a distance of - + 241 45 41 Mpc; no electromagnetic counterpart has been confirmed to date. The source has the most unequal mass ratio yet measured with gravitational waves, - + 0.112 0.009 0.008, and its secondary component is either the lightest black hole or the heaviest neutron star ever discovered in a double compact-object system. The dimensionless spin of the primary black hole is tightly constrained to �0.07. Tests of general relativity reveal no measurable deviations from the theory, and its prediction of higher-multipole emission is confirmed at high confidence. We estimate a merger rate density of 1–23 Gpc−3 yr−1 for the new class of binary coalescence sources that GW190814 represents. Astrophysical models predict that binaries with mass ratios similar to this event can form through several channels, but are unlikely to have formed in globular clusters. However, the combination of mass ratio, component masses, and the inferred merger rate for this event challenges all current models of the formation and mass distribution of compact-object binaries

    Search for long-lived neutral particles in pp collisions at s√=13 TeV that decay into displaced hadronic jets in the ATLAS calorimeter

    Get PDF
    This paper describes a search for pairs of neutral, long-lived particles decaying in the ATLAS calorimeter. Long-lived particles occur in many extensions to the Standard Model and may elude searches for new promptly decaying particles. The analysis considers neutral, long-lived scalars with masses between 5 and 400 GeV, produced from decays of heavy bosons with masses between 125 and 1000 GeV, where the long-lived scalars decay into Standard Model fermions. The analysis uses either 10.8 fb−1 or 33.0 fb−1 of data (depending on the trigger) recorded in 2016 at the LHC with the ATLAS detector in proton–proton collisions at a centre-of-mass energy of 13 TeV. No significant excess is observed, and limits are reported on the production cross section times branching ratio as a function of the proper decay length of the long-lived particles

    Prevention of hepatocellular carcinoma in hepatitis B virus infection

    No full text
    10.1111/j.1440-1746.2009.05985.xJournal of Gastroenterology and Hepatology2481352-135

    Robotic Force Stabilization for Beating Heart Intracardiac Surgery

    No full text

    Non-invasive tracking of injected bone marrow mononuclear cells to injury and implanted biomaterials

    No full text
    Biomaterial scaffolds enhancing the engraftment of transplanted bone-marrow mononuclear cells (BM-MNC) have enormous potential for tissue regeneration applications. However, development of appropriate materials is challenging given the precise microenvironments required to support BM-MNC engraftment and function. In this study, we have developed a non-invasive, real-time tracking model of injected BM-MNC engraftment to wounds and implanted biomaterial scaffolds. BM-MNCs, encoded with firefly luciferase and enhanced GFP reporter genes, were tail vein injected into subcutaneously wounded mice. Luciferase-dependent cell bioluminescence curves revealed our injected BM-MNCs homed to and engrafted within subcutaneous wound sites over the course of 21days. Further immunohistochemical characterization showed that these engrafted cells drove functional changes by increasing the number of immune cells present at early time points and remodelling cell phenotypes at later time points. Using this model, we subcutaneously implanted electrospun polycaprolactone (PCL) and PCL/Collagen scaffolds, to determine differences in exogenous BM-MNC response to these materials. Following BM-MNC injection, immunohistochemical analysis revealed a high exogenous BM-MNC density around the periphery of PCL scaffolds consistent with a classical foreign body response. In contrast, transplanted BM-MNCs engrafted throughout PCL/Collagen scaffolds indicating an improved biological response. Importantly, these differences were closely correlated with the real-time bioluminescence curves, with PCL/Collagen scaffolds exhibiting a∼2-fold increase in maximum bioluminescence compared with PCL scaffolds. Collectively, these results demonstrate a new longitudinal cell tracking model that can non-invasively determine transplanted BM-MNC homing and engraftment to biomaterials, providing a valuable tool to inform the design scaffolds that help augment current BM-MNC tissue engineering strategies.Tracking the dynamic behaviour of transplanted bone-marrow mononuclear cells (BM-MNCs) is a long-standing research goal. Conventional methods involving contrast and tracer agents interfere with cellular function while also yielding false signals. The use of bioluminescence addresses these shortcomings while allowing for real-time non-invasive tracking in vivo. Given the failures of transplanted BM-MNCs to engraft into injured tissue, biomaterial scaffolds capable of attracting and enhancing BM-MNC engraftment at sites of injury are highly sought in numerous tissue engineering applications. To this end, the results from this study demonstrate a new longitudinal tracking model that can non-invasively determine exogenous BM-MNC homing and engraftment to biomaterials, providing a valuable tool to inform the design of scaffolds with implications for countless tissue engineering applications.Richard P.Tan, Bob S.L.Lee, Alex H.P.Chan, Sui Ching G.Yuen, Juichien Hung, Steven G.Wise, Martin K.C.N

    Collaborative tracking for MRI-guided robotic intervention on the beating heart

    No full text
    Magnetic Resonance Imaging (MRI)-guided robotic interventions for aortic valve repair promise to dramatically reduce time and cost of operations when compared to endoscopically guided (EG) procedures. A challenging issue is real-time and robust tracking of anatomical landmark points. The interventional tool should be constantly adjusted via a closed feedback control loop to avoid harming these points while valve repair is taking place in the beating heart. A Bayesian network of particle filter trackers proves capable to produce real-time, yet robust behavior. The algorithm is extremely flexible and general--more sophisticated behaviors can be produced by simply increasing the cardinality of the tracking network. Experimental results on 16 MRI cine sequences highlight the promise of the method
    corecore