243 research outputs found

    Assessing water quality for cropping management practices: A new approach for dissolved inorganic nitrogen discharged to the Great Barrier Reef

    Get PDF
    Applications of nitrogen (N) fertiliser to agricultural lands impact many marine and aquatic ecosystems, and improved N fertiliser management is needed to reduce these water quality impacts. Government policies need information on water quality and risk associated with improved practices to evaluate the benefits of their adoption. Policies protecting Great Barrier Reef (GBR) ecosystems are an example of this situation. We developed a simple metric for assessing the risk of N discharge from sugarcane cropping, the biggest contributor of dissolved inorganic N to the GBR. The metric, termed NiLRI, is the ratio of N fertiliser applied to crops and the cane yield achieved (i.e. kg N (t cane)−1). We defined seven classes of water quality risk using NiLRI values derived from first principles reasoning. NiLRI values calculated from (1) results of historical field experiments and (2) survey data on the management of 170,177 ha (or 53%) of commercial sugarcane cropping were compared to the classes. The NiLRI values in both the experiments and commercial crops fell into all seven classes, showing that the classes were both biophysically sensible (c.f. the experiments) and relevant to farmers’ experience. We then used machine learning to explore the association between crop management practices recorded in the surveys and associated NiLRI values. Practices that most influenced NiLRI values had little apparent direct impact on N management. They included improving fallow management and reducing tillage and compaction, practices that have been promoted for production rather than N discharge benefits. The study not only provides a metric for the change in N water quality risk resulting from adoption of improved practices, it also gives the first clear empirical evidence of the agronomic practices that could be promoted to reduce water quality risk while maintaining or improving yields of sugarcane crops grown in catchments adjacent to the GBR. Our approach has relevance to assessing the environmental risk of N fertiliser management in other countries and cropping systems

    Future greenhouse gas emissions from copper mining: Assessing clean energy scenarios

    Full text link

    Platinum group metals: A review of resources, production and usage with a focus on catalysts

    Full text link
    The major applications of PGMs are as catalysts in automotive industry, petroleum refin-ing, environmental (gas remediation), industrial chemical production (e.g., ammonia production, fine chemicals), electronics, and medical fields. As the next generation energy technologies for hydrogen production, such as electrolysers and fuel cells for stationary and transport applications, become mature, the demand for PGMs is expected to further increase. Reserves and annual production of Ru, Rh, Pd, Ir, and Pt have been determined and reported. Based on currently available re-sources, there is around 200 years lifetime based on current demand for all PGMs, apart from Pd, which may be closer to 100 years. Annual primary production of 190 t/a for Pt and 217 t/a for Pd, in combination with recycling of 65.4 t/a for Pt and 97.2 t/a for Pd, satisfies current demand. By far, the largest demand for PGMs is for all forms of catalysis, with the largest demand in auto catalysis. In fact, the biggest driver of demand and price for Pt, Pd, and Rh, in particular, is auto emission regu-lation, which has driven auto-catalyst design. Recovery of PGMs through recycling is generally good, but some catalytic processes, particularly auto-catalysis, result in significant dissipation. In the US, about 70% of the recycling stream from the end-of-life vehicles is a significant source of global secondary PGMs recovered from spent auto-catalyst. The significant use of PGMs in the large global auto industry is likely to continue, but the long-term transition towards electric vehicles will alter demand profiles

    How Nasa's Independent Verification and Validation (IVandV) Program Builds Reliability into a Space Mission Software System (SMSS)

    Get PDF
    The purpose of this presentation is to outline how the NASA Independent Verification and Validation (IVV) Program helps to build reliability into the Space Mission Software Systems (SMSSs) that its customers develop

    Potential for modulation of the hydrophobic effect inside chaperonins

    Get PDF
    Despite the spontaneity of some in vitro protein folding reactions, native folding in vivo often requires the participation of barrel-shaped multimeric complexes known as chaperonins. Although it has long been known that chaperonin substrates fold upon sequestration inside the chaperonin barrel, the precise mechanism by which confinement within this space facilitates folding remains unknown. In this study, we examine the possibility that the chaperonin mediates a favorable reorganization of the solvent for the folding reaction. We begin by discussing the effect of electrostatic charge on solvent-mediated hydrophobic forces in an aqueous environment. Based on these initial physical arguments, we construct a simple, phenomenological theory for the thermodynamics of density and hydrogen bond order fluctuations in liquid water. Within the framework of this model, we investigate the effect of confinement within a chaperonin-like cavity on the configurational free energy of water by calculating solvent free energies for cavities corresponding to the different conformational states in the ATP- driven catalytic cycle of the prokaryotic chaperonin GroEL. Our findings suggest that one function of chaperonins may be to trap unfolded proteins and subsequently expose them to a micro-environment in which the hydrophobic effect, a crucial thermodynamic driving force for folding, is enhanced

    Phi-values in protein folding kinetics have energetic and structural components

    Full text link
    Phi-values are experimental measures of how the kinetics of protein folding is changed by single-site mutations. Phi-values measure energetic quantities, but are often interpreted in terms of the structures of the transition state ensemble. Here we describe a simple analytical model of the folding kinetics in terms of the formation of protein substructures. The model shows that Phi-values have both structural and energetic components. In addition, it provides a natural and general interpretation of "nonclassical" Phi-values (i.e., less than zero, or greater than one). The model reproduces the Phi-values for 20 single-residue mutations in the alpha-helix of the protein CI2, including several nonclassical Phi-values, in good agreement with experiments.Comment: 15 pages, 3 figures, 1 tabl

    Global copper cycles and greenhouse gas emissions in a 1.5 °C world

    Get PDF
    Moving towards a 1.5 °C world could fundamentally alter the future copper cycle through two key drivers: the implementation of decarbonization technologies and the imposition of an emissions budget on production activities. This study explores the impact of these drivers on the global copper cycle using a dynamic material flow analysis, coupled with an optimization technique. The results show that global final demand for copper could increase by a factor of 2.5 between 2015 and 2050, reaching 62 million metric tons, with approximately 4% of the increase coming from copper used in renewable energy-based power plants and 14% coming from electric vehicles. While there are sufficient resources to meet this growing demand, the greenhouse gas emissions of the copper cycle could account for approximately 2.7% of the total emissions budget by 2050, up from 0.3% today. Assessment of possible mitigation efforts by the copper industry shows that this can be halved, but will still be 35% short of the emissions budget target based on proportional responsibility, i.e., applying the same mitigation rate to all sectors. Rather, collective action is required by all stakeholders interacting with the copper cycle to bridge the mitigation gap, including through efforts to drive advanced sorting, higher fabrication yields, extended product lifetimes, and increased service efficiency of in-use copper stock

    Defining freshwater as a natural resource: a framework linking water use to the area of protection natural resources

    Full text link
    © 2019, Springer-Verlag GmbH Germany, part of Springer Nature. Purpose: While many examples have shown unsustainable use of freshwater resources, existing LCIA methods for water use do not comprehensively address impacts to natural resources for future generations. This framework aims to (1) define freshwater resource as an item to protect within the Area of Protection (AoP) natural resources, (2) identify relevant impact pathways affecting freshwater resources, and (3) outline methodological choices for impact characterization model development. Methods: Considering the current scope of the AoP natural resources, the complex nature of freshwater resources and its important dimensions to safeguard safe future supply, a definition of freshwater resource is proposed, including water quality aspects. In order to clearly define what is to be protected, the freshwater resource is put in perspective through the lens of the three main safeguard subjects defined by Dewulf et al. (2015). In addition, an extensive literature review identifies a wide range of possible impact pathways to freshwater resources, establishing the link between different inventory elementary flows (water consumption, emissions, and land use) and their potential to cause long-term freshwater depletion or degradation. Results and discussion: Freshwater as a resource has a particular status in LCA resource assessment. First, it exists in the form of three types of resources: flow, fund, or stock. Then, in addition to being a resource for human economic activities (e.g., hydropower), it is above all a non-substitutable support for life that can be affected by both consumption (source function) and pollution (sink function). Therefore, both types of elementary flows (water consumption and emissions) should be linked to a damage indicator for freshwater as a resource. Land use is also identified as a potential stressor to freshwater resources by altering runoff, infiltration, and erosion processes as well as evapotranspiration. It is suggested to use the concept of recovery period to operationalize this framework: when the recovery period lasts longer than a given period of time, impacts are considered to be irreversible and fall into the concern of freshwater resources protection (i.e., affecting future generations), while short-term impacts effect the AoP ecosystem quality and human health directly. It is shown that it is relevant to include this concept in the impact assessment stage in order to discriminate the long-term from the short-term impacts, as some dynamic fate models already do. Conclusions: This framework provides a solid basis for the consistent development of future LCIA methods for freshwater resources, thereby capturing the potential long-term impacts that could warn decision makers about potential safe water supply issues in the future

    The synthesis of the rhamnogalacturonan II component 3-deoxy-D-manno-2-octulosonic acid (Kdo) is required for pollen tube growth and elongation

    Get PDF
    Despite a very complex structure, the sugar composition of the rhamnogalacturonan II (RG-II) pectic fraction is extremely conserved. Among its constituting monosaccharides is the seldom-observed eight-carbon sugar 3-deoxy-D-manno-octulosonic acid (Kdo), whose phosphorylated precursor is synthesized by Kdo-8-P synthase. As an attempt to alter specifically the RG-II structure in its sugar composition and assess the consequences on the function of RG-II in cell wall and its relationship with growth, Arabidopsis null mutants were sought in the genes encoding Kdo-8-P synthase. Here, the isolation and characterization of one null mutant for the isoform 1 (AtkdsA1-S) and two distinct null mutants for the isoform 2 of Arabidopsis Kdo-8-P synthase (AtkdsA2-V and AtkdsA2-S) are described. Evidence is provided that AtkdsA2 gene expression is preferentially associated with plantlet organs displaying a meristematic activity, and that it accounts for 75% of the mRNAs to be translated into Kdo-8-P synthase. Furthermore, this predominant expression of AtKDSA2 over AtKDSA1 was confirmed by quantification of the cytosolic Kdo content in the mutants, in a variety of ecotypes. The inability to identify a double knockout mutant originated from pollen abortions, due to the inability of haploid pollen of the AtkdsA1- AtkdsA2- genotype to form an elongated pollen tube properly and perform fertilization
    • 

    corecore