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Abstract

In this paper, we investigate the base-p expansions of putative counterexamples to the p-adic
ittlewood conjecture of de Mathan and Teulié. We show that if a counterexample exists, then
o does a counterexample whose base-p expansion is uniformly recurrent. Furthermore, we show
hat if the base-p expansion of x is a morphic word τ (ϕω(a)) where ϕω(a) contains a subword of
he form u Xu Xu with limn→∞ |ϕn(u)| = ∞, then x satisfies the p-adic Littlewood conjecture.
n the special case when p = 2, we show that the conjecture holds for all pure morphic words.

2024 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY
icense (http://creativecommons.org/licenses/by/4.0/).

SC: primary 11J04; secondary 11J61
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1. Introduction

The p-adic Littlewood conjecture (pLC) is an open problem in Diophantine approx-
imation, first proposed by de Mathan and Teulié [8] in 2004, which states that for each
prime number p and all x ∈ R the following equality holds

lim inf
q→∞

q · |q|p · ∥qx∥ = 0. (1)
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Here, | · |p denotes the p-adic absolute value, ∥ · ∥ denotes the distance to the nearest
integer, and q runs over the positive integers. It follows trivially that if a real number x
is well-approximable, i.e.,

lim inf
q→∞

q · ∥qx∥ = 0,

then x satisfies pLC, for all primes p.
In the paper that introduced this problem, de Mathan and Teulié showed that (1) is

equivalent to the condition that for each real number x and all non-negative integers k,
the partial quotients of pk x are not uniformly bounded from above.

emma 1.1 ([8, Lemma 1.3]). For each k ∈ Z≥0, let pk x = [a0,k; a1,k, . . .] be the
continued fraction expansion of pk x. Then condition (1) is equivalent to

sup{ai,k : i ≥ 1, k ≥ 0} = +∞. (2)

In particular, the p-adic Littlewood conjecture is deeply connected to how the partial
quotients of a real number behave under iterative prime multiplication. Note that since

1
supi≥1

{
ai,k
}

+ 2
≤ inf

q≥1

{
q · ∥qpk x∥

}
≤

1
supi≥1

{
ai,k
} ,

or all k ∈ Z≥0 (see [7, Ch. 7]), conditions (1) and (2) are also equivalent to

inf
k≥0

inf
q≥1

q · ∥qpk x∥ = 0. (3)

The main results regarding this conjecture can be broadly separated into two cate-
ories: (1) results which induce restrictions on the structure of the continued fraction
xpansions of potential counterexamples to pLC, and (2) results regarding the measure
f the set of counterexamples to pLC and related objects. Notable works regarding the
ontinued fraction expansion of putative counterexamples to pLC include that of de
athan and Teulié [8], which shows that quadratic irrationals satisfy pLC; Bugeaud,
rmota and de Mathan [6], which shows that all real numbers which have arbitrarily
any repetitions of a given finite block in their continued fraction expansion satisfy pLC;

nd Badziahin, Bugeaud, Einsiedler and Kleinbock [4], which shows that the complexity
unction of the continued fraction expansion of a counterexample to pLC must grow sub-
xponentially, but the continued fraction expansion cannot be recurrent, see Section 2.1
or a definition. In particular, the complexity function cannot grow too quickly or too
lowly. The main result regarding the measure of the set of potential counterexamples is
hat of Einsiedler and Kleinbock [10], which shows that for each prime p the set of real
umbers that do not satisfy (1) has Hausdorff dimension 0. In fact, a stronger result was
hown: this set is a countable union of sets which have box-counting dimension zero.

In this manuscript, instead of looking at the continued fraction expansions of potential
ounterexamples to pLC, we will look at the base-p expansions (see Section 2), which for
he most part appear to have been largely unexplored. Our main results are presented in
ection 2. In Section 2.1, we look at the base-p expansions of potential counterexamples

o pLC and put restrictions on the type of repetitive blocks that can occur in these
xpansions. Furthermore, we show that if any counterexamples to pLC exist, then there
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exist counterexamples with uniformly recurrent base-p expansions. In Section 2.2, we
tilise the results of Section 2.1 to analyse the 2-adic Littlewood conjecture. Due to
he simpler alphabet, we are able to provide stronger results. In particular, we show
hat any real number with a pure morphic base-2 expansion satisfies 2LC and that
o counterexample to 2LC can have arbitrarily long overlap-free subwords — see
efinition 1.2. The proofs of the results of Section 2.1 are contained in Section 3 and

he proofs for Section 2.2 are contained in Section 4.

.1. Notation

Let A be a finite set which we refer to as an alphabet and let A∗ be the set of all finite
ords over A including the empty word, which we denote as ϵ. The set A∗ forms a free
onoid over A generated by concatenation. We denote the set of (right-sided) infinite
ords of A as Aω, and denote the union of this set with A∗ as A∞. Given these notions,
e define the length | · | of a word w ∈ A∞ to be the number of letters that appear in
, where |ϵ| = 0 and |w| = ∞ if w ∈ Aω.

efinition 1.2. A finite word w ∈ A∗ is an α-power if it can be written in the form
w = v⌊α⌋v′ where |v′

|/|v| ≥ {α} := α − ⌊α⌋. A word w ∈ A∞ is overlap-free if it
contains no subword of the form u Xu Xu, where u ∈ A and X ∈ A∗.

Note that a word contains an overlap if and only if it contains a subword that is a
(2 + δ)-power for some δ > 0.

1.1.1. Morphic words
An important class of words are the morphic words. As a special case, these include all

automatic words, i.e., words which can be generated by a finite automaton with output.
Let ϕ : A → A∗ be a morphism. If there is some natural number j ≥ 1 such that
ϕ j (a) = ϵ, for a ∈ A, then a is said to be mortal. The set of mortal letters is denoted by
Mϕ . A morphism ϕ is prolongable on the letter a ∈ A, if ϕ(a) = ax and x ̸∈ Mϕ

∗. If a
morphism is prolongable on a, then the words a, ϕ(a), ϕ2(a), . . . converge to an infinite
word ϕω(a) of the form

ϕω(a) = ax · ϕ(x) · ϕ2(x) · . . . (4)

Any word that can be formed in this way is referred to as a pure morphic word. If
there is a coding τ : A → B – i.e., a morphism that maps letter to letter – such that
w = τ (ϕω(a)), then w is referred to as a morphic word. A morphism ϕ : A → A∗ is
k-uniform if |ϕ(a)| = k for all a ∈ A and is expanding if |ϕ(a)| ≥ 2 for all a ∈ A. A
morphism ϕ is primitive if there exists some exponent n ≥ 1 such that for every a, b ∈ A,
the letter b appears in the word ϕn(a) at least once.

Example 1.3. The Thue–Morse word M is the overlap-free, infinite word that is the limit
µω(0) of the morphism µ : {0, 1} → {0, 1}

∗ with µ(0) := 01 and µ(1) := 10. The first
few letters are

M = 0110100110010110 · · · .

The complement of the Thue–Morse word M̃ is the word given by µω(1).
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2. Main results

For every x ∈ [0, 1] and every natural number n ≥ 2, we can rewrite x in the following
orm

x =

∞∑
i=1

ai n−i ,

here ai ∈ {0, 1, . . . , n − 1} for all i ∈ N. Unless the number x is a rational number
with denominator nk for some k ≥ 1, this series expansion is unique. Since pLC is
learly satisfied for rational numbers, we will disregard this case and only consider real
umbers that correspond to a unique sequence of digits. The word formed by taking the
oefficients of this power series is called the base-n expansion of x . We denote this word
s w(x, n), i.e., w(x, n) := a1a2 · · · . Conversely, given a word w ∈ {0, 1, . . . , n − 1}

ω,
e will denote the real number whose base-n expansion coincides with w as wn . If

nx} is the fractional part of nx , i.e., {nx} := nx − ⌊nx⌋, then the corresponding base-n
xpansion is T (a1a2a3 · · · ) := a2a3 · · · . In particular, up to taking the number modulo
, the shift map T induces multiplication by n. More generally, the base-n expansion of
nk x} corresponds to the word T k(a1a2a3 · · · ) = ak+1ak+2 · · · .

Due to this structure, the base-n expansion is very well-equipped for producing
nformation regarding the limiting behaviour of a real point under repeated multiplication
y n. Whilst the rational approximations coming from the base-n (or base-p) expansion
re typically worse than the rational approximations coming from the continued fraction
xpansion, in a number of cases this approximation is still good enough to induce
estrictions on the potential counterexamples of pLC. On the other hand, whilst the
ontinued fraction expansion gives a very good rational approximation of a real number,
he integer multiplication of continued fractions is far more complicated — see [12,14].

For our purposes, it will also be useful to deal with base-n representations of integers.
or any integer a ≥ 0, we can uniquely write a as

m∑
i=1

ai nm−i ,

ith ai ∈ {0, 1, . . . , n − 1} and am ̸= 0 (unless m = 1). The word v(a, n) formed
y taking the coefficients of this sum is the base-n representation of a. Given a finite,
on-empty word v, let v+

n denote the integer whose base-n representation coincides with
.

.1. The p-adic Littlewood conjecture

For a finite word w on some alphabet A and a δ ∈ (0, 1), we will denote the prefix
f the word w of length ⌊δ · |w|⌋ as wδ . Note that by construction, wwwδ is an α-
ower for all α ≤ 2 + (⌊δ|w|⌋/|w|). The following theorem shows that if the base-p
xpansion of a real number x has a sequence of subwords of the form w jw jw

δ j
j with

im j→∞ |w
δ j
j | = lim j→∞⌊δ j · |w j |⌋ = ∞, then x satisfies pLC.

heorem 2.1. Let w = (an)∞n=1 be an infinite word on the alphabet {0, 1, . . . , p − 1}

atisfying the property that there is a sequence (w )∞ of finite words and a sequence of
j j=1
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positive real numbers (δ j )∞j=1 which are less than 1 such that the word w jw jw
δ j
j occurs

s a subword in w and lim j→∞ |w
δ j
j | = ∞. Then wp =

∑
∞

n=1 an p−n satisfies the p-adic
ittlewood conjecture.

Taking (δ j )∞j=1 to be a constant sequence leads to the following corollary.

Corollary 2.2. Assume x is a counterexample to pLC and let w(x, p) be the correspond-
ing base-p expansion. For each fixed α > 2, the length of the α-powers appearing in
w(x, p) are bounded.

Theorem 2.1 can be generalised as follows.

Theorem 2.3. Let w = (an)∞n=1 be an infinite word on the alphabet {0, 1, . . . , p −1} that
ontains a sequence (w j )∞j=1 of finite words with m j = |w j | and a sequence of positive

eal numbers (δ j )∞j=1 such that the word w jw
δ j
j occurs as a subword in w. Furthermore,

et (ℓ j )∞j=1 be the sequence of natural numbers satisfying

pℓ j −1
≤

pm j − 1
gcd(pm j − 1, (w j )+p )

≤ pℓ j . (5)

If lim j→∞ m j + ⌊m jδ j⌋ − 2ℓ j = ∞, then wp satisfies pLC.

In the above theorem, the three most useful cases are:

• when gcd(pm j − 1, (w j )+p ) = 1, ℓ j = m j , and lim j→∞⌊m jδ j⌋ − m j = ∞

(Theorem 2.1),
• when m j = 2n j with n j ∈ N, gcd(pm j − 1, (w j )+p ) = pn j − 1, ℓ j = n j + 1 and

lim j→∞⌊m jδ j⌋ = ∞, and
• when lim j→∞ δ j = ∞.

As an example of how the second of the above bullet points can be used, given a
ord w = b1b2 · · · bn in {0, 1, . . . , p − 1}

∗, the integer (ww)+p will always be divisible
by pn

− 1 where b = p − 1 − b for letter each b in the alphabet {0, 1, . . . , p − 1}. This
ollows since

n∑
i=1

pn−i
·
[

pnbi + p − 1 − bi
]

= (pn
− 1) +

n∑
i=1

(pn
− 1)pn−i bi

Thus, we obtain the following corollary.

Corollary 2.4. Let w = (an)∞n=1 be an infinite word on the alphabet {0, 1, . . . , p − 1}

satisfying the property that there is a sequence (w j )∞j=1 of finite words and a sequence

of positive real numbers (δ j )∞j=1 such that the word w jw jw
δ j
j occurs as a subword in w

nd lim j→∞ |w
δ j
j | = ∞. Then wp satisfies the p-adic Littlewood conjecture.

Another property that can be deduced is that if a word w contains a sequence of
ncreasing prefixes of another word v and v satisfies pLC, then so does w .
p p
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Proposition 2.5. Let w, v ∈ {0, 1, . . . , p − 1}
ω and assume that there exists a sequence

of prefixes (vk)∞k=1 of v such that |vk | → ∞ and vk appears as a subword of w for all
k. If vp satisfies pLC, then so does wp.

An infinite word w = (an)∞n=1 is said to be recurrent if any finite subword v of w
ccurs infinitely often in w. It is said to be uniformly recurrent if for every finite subword
of w, there exists a constant Nv such that v appears in every subword of w of length Nv .
sing an idea similar to the work of Badziahin [3] on “limit words” of continued fraction

xpansions, we can look at the topological closure of the set of base-p expansions of the
ounterexamples to pLC under the action of the shift map. This allows us to deduce that
f this set is non-empty, then it contains an element with a uniformly recurrent base-p
xpansion.

heorem 2.6. If there is a counterexample to pLC, there is a counterexample with a
niformly recurrent base-p expansion.

emark 2.7. It is worth noting that none of the above statements rely on p being prime
ther than to link to the p-adic Littlewood conjecture. In particular, we can replace p with
composite number n to obtain analogous results on the “n-adic Littlewood conjecture”.

The proof of Theorems 2.1 and 2.3 can be found in Section 3.1. The proof of
roposition 2.5 and Theorem 2.6 is in Section 3.2.

.1.1. Results on morphic words
Let w = ϕω(a) be a pure morphic word. If the prefix ϕk(a) contains overlap of the

orm u Xu Xu for some k ∈ N, then ϕn(u)ϕn(X )ϕn(u)ϕn(X )ϕn(u) is a subword of ϕk+n(a)
or all n ∈ N. Under the assumption that u is not mortal for ϕ, infinitely many instances
f overlap occur. Furthermore, if limn→∞ |ϕn(u)| = ∞, the word satisfies the conditions
f Theorem 2.1. This leads to the following proposition.

roposition 2.8. Let w = ϕω(a) ∈ Aω be a pure morphic word containing a subword
Xu Xu such that limn→∞ |ϕn(u)| = ∞. For any non-erasing morphism g : A →

0, 1, . . . , p − 1}, the real number g(w)p satisfies the p-adic Littlewood conjecture.

emark 2.9. Here we should note that the condition limn→∞ |ϕn(u)| = ∞ is instantly
atisfied for morphisms which are expanding, including (powers of) primitive morphisms
nd k-uniform morphisms for k ≥ 2. Furthermore, due to a result of Durand [9],
ll uniformly recurrent morphic words are primitive morphic. Therefore, if x is a
ounterexample to pLC with a morphic, uniformly recurrent base-p expansion of the
orm τ (ϕω(a)), then the underlying pure morphic word ϕω(a) must be overlap-free.

Similar to the previous argument, if a morphism ϕ is prolongable on the letters
, b ∈ A∗ and b appears in the word ϕω(a) at least once, then every prefix of ϕω(b)
ppears in ϕω(a). Proposition 2.5 then directly implies the following corollary.

orollary 2.10. Let w = ϕω(a) be a pure morphic word over A and let B be a sub-
lphabet of A such that ϕ : B → B∗. Furthermore, assume that ϕω(a) contains a letter
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b ∈ B such that ϕ is prolongable over b and let τ : A → {0, 1, . . . , p − 1} be a coding.
f τ (ϕω(b))p satisfies pLC, then so does τ (ϕω(a))p.

.2. Applications to the 2-adic Littlewood conjecture

In the case of the 2-adic Littlewood conjecture, all pure morphic words satisfy at
east one of three properties (P1)–(P3) — see Lemma 4.2. Combining this result with
heorem 2.1 and other results in the literature leads to the following theorem.

heorem 2.11. Let x ∈ [0, 1] and assume that the corresponding base-2 expansion
(x, 2) is a pure morphic word. Then x satisfies 2LC.

This theorem can be extended to a class of results regarding pLC by applying
orollary 2.10.

orollary 2.12. Let w = ϕω(a) be a pure morphic word over A and let B be a sub-
lphabet of A such that ϕ : B → B∗ and |B| = 2. Furthermore, assume that ϕω(a)
ontains a letter b ∈ B such that ϕ is prolongable over b. Then τ (w)p satisfies pLC for
ny coding τ : A → {0, 1, . . . , p − 1}.

Finally, as a result contrasting with Corollary 2.2, we show that the lengths of the
verlap-free subwords of the base-2 expansion of a counterexample to 2LC are bounded.

heorem 2.13. Assume that x is a counterexample to 2LC and let w(x, 2) be the
orresponding base-2 expansion. Then the length of the overlap-free subwords in w(x, 2)
re bounded.

The proofs of Theorem 2.11 and Corollary 2.12 can be found in Section 4.1 and the
roofs of Theorem 2.13 can be found in Section 4.2.

. The p-adic Littlewood conjecture

.1. Proof of Theorems 2.1 and 2.3

To prove Theorems 2.1 and 2.3, we will show that the conditions of these theorems
mply (3). To this end, we will produce sequences (q j )∞j=1 and (k j )∞j=1 of natural numbers
uch that

lim
j→∞

q j · ∥q j pk j x∥ = 0. (6)

roof of Theorem 2.1. For each j ∈ N, let k j be the length of the prefix of (an)∞n=1 up
o the first occurrence of the subword w jw jw

δ j
j . Set

x ′
:=
{

pk j x
}

=

{
pk j

∞∑
n=1

an p−n

}
=

∞∑
n=1

ak j +n p−n.

hen, the base-p expansion of x ′ begins with the subword w w w
δ j
j j j .
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Now, for each j , we denote w j as b( j)
1 b( j)

2 · · · b( j)
m j where m j = |w j |, and define a

sequence of rational numbers

r j

q j
:=

∞∑
h=0

m j∑
i=1

b( j)
i

pi+hm j
=

∞∑
h=0

1
phm j

m j∑
i=1

b( j)
i

pi
.

These are the rational numbers (in reduced form) whose base-p expansion is obtained
by extending the word w j periodically. We will show that the sequence of denominators
(q j )∞j=1 can be used in (6).

The numbers r j/q j approximate x ′ rather well. Indeed,⏐⏐⏐⏐x ′
−

r j

q j

⏐⏐⏐⏐ =

⏐⏐⏐⏐⏐⏐
m j∑

i=⌊δ j m j ⌋+1

c( j)
2,i

pi+2m j
+

∞∑
h=3

1
phm j

m j∑
i=1

c( j)
h,i

pi

⏐⏐⏐⏐⏐⏐ < 1
p2m j +⌊δ j m j ⌋

,

where c( j)
h,i = (ak j +hm j +i − b( j)

i ). On the other hand,

r j

q j
=

(
∞∑

h=0

1
phm j

)( m j∑
i=1

b( j)
i

pi

)
=

pm j

pm j − 1

m j∑
i=1

b( j)
i

pi
=

r ′

j

pm j − 1
,

where r ′

j ∈ Z. Consequently, q j ≤ pm j − 1 < pm j and therefore,

q j · ∥q j pk j x∥ ≤ q2
j ·

⏐⏐⏐⏐x ′
−

r j

q j

⏐⏐⏐⏐ < 1
p⌊δ j m j ⌋

.

ince δ j · m j is assumed to tend to infinity with j , the theorem follows. □

The above proof illustrates a very useful technique for using combinatorial properties
f base-p expansions to show that real numbers satisfy pLC. The proof of Theorem 2.3
erves as generalisation of the above method.

roof of Theorem 2.3. For each j ∈ N, let k j be the length of the prefix of (an)∞n=1 up
o the first occurrence of the subword w jw

δ j
j and set

x ′
:= {pk j x}

hen, the base-p expansion of x ′ begins with the subword w jw
δ j
j . Let n j = ⌊δ j⌋.

For each j ∈ N, we denote w j as b( j)
1 b( j)

2 · · · b( j)
m j and set

r j

q j
:=

∞∑
h=0

m j∑
i=1

b( j)
i

pi+hm j
=

(
∞∑

h=0

1
p(h+1)m j

)( m j∑
i=1

pm j −i b( j)
i

)
. (7)

hese are the rational numbers (in reduced form) whose base-p expansion is obtained
y extending the word w j periodically.

As in the proof of Theorem 2.1, this sequence of rational numbers r j
q j

approximates
x ′ very well,⏐⏐⏐⏐x ′

−
r j

q j

⏐⏐⏐⏐ =

⏐⏐⏐⏐⏐⏐
m j∑

i=⌊(δ j −n j )m j ⌋+1

c( j)
n j ,i

pi+n j m j
+

∞∑
h=n j +1

1
phm j

m j∑
i=1

c( j)
h,i

pi

⏐⏐⏐⏐⏐⏐ < 1
pm j +⌊δ j m j ⌋

,

where c( j)
= (a − b( j)).
h,i k j +2hm j +i i
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Let d j = gcd(pm j − 1, (w j )+p ). Then there exists some a ∈ N such that

ad j =

m j∑
i=1

pm j −i b( j)
i .

Combining this with (7) shows

r j

q j
= a ·

d j

pm j − 1
.

From (5), it follows that q j ≤ (pm j − 1)/d j ≤ pℓ j and therefore

q2
j ·

⏐⏐⏐⏐x ′
−

r j

q j

⏐⏐⏐⏐ < p2ℓ j

pm j +⌊δ j m j ⌋
=

1
pm j +⌊δ j m j ⌋−2ℓ j

.

Since it was assumed that lim j→∞ m j + ⌊δ j m j⌋ − 2ℓ j = ∞, this completes the
roof. □

.2. Proof of Proposition 2.5 and Theorem 2.6

Given an infinite word w ∈ Aω, we define the set of suffixes S(w) of w ∈ Aω to be

S(w) := {T k(w) : k ∈ Z≥0}.

e can turn Aω into a metric space by defining a metric d(x, y) = 2−|u|, where u is the
argest common prefix of x and y and d(x, x) = 0. From this, we can take the topological
losure of the set of suffixes S(w). A word v ∈ Aω is an element of S(w) if and only if
very prefix of v appears in w. Analogously, for any x ∈ [0, 1], we can define the set

Tp(x) := {{pn x} : n ∈ N ∪ {0}}.

ssuming x is not a rational number with denominator equal to pk for some natural
umber k ≥ 1, the sets Tp(x) and S(w(x, p)) are in bijection, where each real number
orresponds to its base-p expansion. Likewise, the topological closures Tp(x) (using the
uclidean metric) and S(w(x, p)) are also in bijection. This comes from the observation

hat there is a subsequence {pk j x} that limits to y if and only if the base-p expansions
of {pk j x} limit to the base-p expansion of y. Using the notions above, the proof of
Proposition 2.5 essentially comes down to showing that if any accumulation point of
Tp(x) satisfies pLC, then x satisfies pLC. The contrapositive of this statement is shown
in the next lemma.

Lemma 3.1. Let x be a counterexample to pLC and assume that there exists some ε > 0
such that m p(x) ≥ ε. Then m p(y) ≥ ε for all y ∈ Tp(x).

roof. We trivially have that m p(x) ≥ ε implies that m p({pn x}) ≥ ε for every n ∈ N∪{0},
ince

lim inf q · |q|p · ∥qpn x∥ = lim inf pnq · |pnq|p · ∥pnqx∥ ≥ lim inf q · |q|p · ∥qx∥.

q→∞ q→∞ q→∞
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ε

F
t
t

t

a

P

Assume that y is a limit point of Tp(x) such that m p(y) < ε. Then there exists some
′
∈ R satisfying 0 < ε′ < ε < 1 and some sequence (qn)∞n=1 such that

lim
n→∞

qn · |qn|p · ∥qn y∥ = ε′.

or every n ∈ N, let δn = 2−1q−2
n (ε− ε′) and let kn be the smallest natural number such

hat {pkn x} = y + ∆n with |∆n| < δn . The existence of each kn follows from the fact
hat y is an accumulation point. This implies

pkn qn · |pkn qn|p · ∥pkn qn x∥ = qn · |qn|p · ∥qn pkn x∥

= qn · |qn|p · ∥qn(y + ∆n)∥

≤ qn · |qn|p · ∥qn y∥ + qn · |qn|p · ∥qn∆n∥

≤ qn · |qn|p · ∥qn y∥ + qn · |qn∆n|.

Then

lim
n→∞

pkn qn · |pkn qn|p · ∥pkn qn x∥ ≤ ε′
+ 2−1(ε − ε′) < ε.

Therefore, m p(x) < ε which is a contradiction. □

We will now use Lemma 3.1 to deduce that should a counterexample x to pLC exist,
here exists an element y of Tp(x) with a uniformly recurrent base-p expansion that is a

counterexample to pLC. This is sufficient for Theorem 2.6.

Proposition 3.2. Let x be a counterexample of pLC. Then Tp(x) contains a counterex-
mple of pLC with a uniformly recurrent base-p expansion.

roof. By construction Tp(x) is closed and bounded. Therefore, Tp(x) is compact and
invariant under multiplication by p. The corresponding set of base-p expansions is given
by S(w(x, p)) and is also compact and invariant under the shift map T . At least one
minimal, invariant, compact subset R of S(w(x, p)) exists, and by [13, Theorem 1.5.9],
this is a set comprised of numbers with uniformly recurrent base-p expansions. By
Lemma 3.1, all elements in R are counterexamples to pLC. □

4. The 2-adic Littlewood conjecture

4.1. Proof of Theorem 2.11

In order to prove Theorem 2.11, it will be useful to first introduce a number of
auxiliary results. The first result is that of Seébold [15], which shows that the only pure
morphic words over {0, 1} which are overlap-free are the Thue–Morse word M and its
complement M̃ .

Theorem 4.1 ([15]). M and M̃ are the only pure morphic overlap-free words in {0, 1}
ω.

Using this theorem, we can give the following characterisation of all binary pure

morphic words.
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Lemma 4.2. Let w be a pure morphic word in {0, 1}
ω, where ϕ is the underlying

morphism. Then (at least) one of the following statements holds:

(P1) w is M or M̃.
(P2) There is a non-trivial subword v of w, such that vn is a subword of w for all

n ∈ N.
(P3) w contains overlap of the form aXaXa where a ∈ A and X ∈ A∗ and

limn→∞ |ϕn(a)| = ∞.

Proof. In the case that w is overlap-free, Theorem 4.1 shows that w is the Thue–Morse
ord M or its complement M̃ (P1).
Assume that w is not overlap-free and that w = ϕω(0) — the case that w = ϕω(1)

ollows by symmetry. Then, for some words u, v ∈ {0, 1}
∗, we have

ϕ(0) = 0u and ϕ(1) = v.

ince ϕ is prolongable over 0, the word u is not the empty word. In particular, |ϕ(0)| ≥ 2.
ote that if u consists only 0’s, i.e., u = 0n for n ∈ N, then

w = ϕω(0) = 0ω,

here xω is the periodic word xxx · · · . Thus, w satisfies (P2).

Case I: v is the empty word ϵ.
Since ϕ(1) = ϵ, applying the morphism to ϕk(0) will ignore any 1’s in this sequence.

In other words, if ik is the number of 0’s that appear in ϕk(0), then

ϕk+1(0) = (ϕ(0))ik .

herefore, ik+1 = ik · i1 = i k+1
1 . Since ϕ is prolongable, u contains the letter 0 at least

nce, and so i1 ≥ 2. Since limk→∞ ik = ∞,

w = ϕω(0) = (ϕ(0))ω.

n this case, w satisfies (P2).

ase II: v = 1n .
As discussed above, we can assume that u contains the letter 1 at least once. If

(1) = 1n for some n ≥ 2, then ϕk(1) = 1nk
. Since ϕ(0) contains the letter 1, the

ord ϕk+1(0) contains the subword ϕk(1) for all k ∈ N. Therefore, w = ϕω(0) satisfies
P2).

Let v = 1. Note that if u does not contain the letter 0, i.e., u = 1k , then

ϕ2(0) = ϕ(0)ϕ(1k) = 012k, ϕ3(0) = ϕ(0)ϕ(12k) = 013k, and ϕm(01k) = 01mk .

n this case, ϕω(0) = 01∞ and (P2) is satisfied. Furthermore, if u = u′01k with k ∈ N,
e note that for all m ∈ N

ϕ(01m) = 0u′01k1m
= 0u′01(k+m).

In particular, for all n ∈ N the word ϕn(u) ends in the term 1(n+1)k . Therefore, w satisfies
P2), and so we have now reduced our considerations to the cases where u ends in the
letter 0.
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ϕ

σ

If u = 1k0 with k ∈ N, then

ϕ2(0) = ϕ(0)1kϕ(0) = (01k0)1k(01k0).

Since this word contains the subword 01k01k0 and ϕ is prolongable on 0, the length of
n(0) tends to infinity and (P3) is satisfied.

Finally, assume that u = u′01k0 with k ∈ Z≥0. The word

ϕ(01k0) = 0u′01k01k0u′01k0

contains 01k01k0 as a subword. Since ϕ is prolongable on 0, the length of ϕn(0) tends
to infinity and (P3) is satisfied.

Case III: v contains 0.
Again, we can freely assume that u contains the letter 1. Since v contains the letter 0,

the morphism ϕ is primitive: if v contains both 0 and 1, it follows by definition; if v only
contains the letter 0, then ϕ2(1) will contain ϕ(0) which contains both the letters 0 and 1.
Since ϕ is primitive, limn→∞ |ϕn(0)| = limn→∞ |ϕn(1)| = ∞. Under the assumption that
these words contain overlap (otherwise (P1) applies), it follows that (P3) is satisfied. □

The final result needed to prove Theorem 2.11 is due to Badziahin and Zorin, which
shows that the real number that has the Thue–Morse word (or its complement) as its
base-n expansion is well-approximable provided that n is not divisible by 15. Note that
if n is divisible by 15 the result is unknown, as opposed to being false.

Theorem 4.3 ([5]). Let Mn be the real number whose base-n expansion is the Thue–
Morse word. If n is not divisible by 15, then Mn is well-approximable.

Combining together Section 3.2, Lemma 4.2, and Theorem 4.3 provides the proof for
Theorem 2.11.

Proof of Theorem 2.11. From Theorem 4.3, M2 is well-approximable and therefore,
satisfies 2LC. In this case, M̃2 is given by 1 − M2. Since M2 is well-approximable, so
is M̃2. Therefore, the real numbers whose base-2 expansion satisfy (P1) satisfy 2LC.
For words satisfying (P2), we note that for any periodic word v, i.e., v = Xω, the
real number v2 is rational and therefore, well-approximable. Applying Proposition 2.5
shows that the real numbers whose base-2 expansions satisfy (P2), also satisfy 2LC.
Finally, Proposition 2.8 implies that for any base-2 expansion which satisfies (P3), the
corresponding real number satisfies 2LC. □

4.1.1. Proof of Corollary 2.12
From Corollary 2.10, we can extend Theorem 2.11 to Corollary 2.12, by showing that

for any morphism ψ : {a, b} → {a, b}
∗ which is prolongable on a with a, b ∈ A and any

coding τ : A → {0, 1, . . . , p − 1}, the real number τ (ψω(a))p satisfies pLC. Note that
since a and b are arbitrary letters, we can consider them to be letters in {0, 1, . . . , p −1}

and forget the coding. By the same argument, the word ψω(a) can be rewritten as a
coding of a pure morphic word w over the alphabet {0, 1}, i.e., ψω(a) = σ (w) where

(0) = a and σ (1) = b. If w satisfies (P2) or (P3), then ψω(a) satisfies pLC using
p
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the same arguments as in the proof of Theorem 2.11. When ψω(a) is a coding of the
hue–Morse word or its complement, the situation is a bit more complicated.

Let T M(a, b) be the coding of M , where 0 is mapped to a and 1 is mapped to
. In order to complete the proof of Corollary 2.12, we will show that T M(a, b)p is
ell-approximable for all primes p and all a, b ∈ {0, 1, . . . , p − 1}.

roposition 4.4. Let a, b ∈ {0, 1, . . . , n − 1}. If n is not divisible by 15, then T M(a, b)n

s well-approximable.

roof. We start this proof by noting that if a real number x is well-approximable, then
dding a rational number p/q or multiplying by a rational constant will preserve this
roperty. In particular, T M(0, 1)n is well-approximable if and only if r · T M(0, 1)n is
ell-approximable for all r ∈ Q. If we restrict r to {0, 1, . . . , n − 1}, then the base-n

xpansion of T M(0, r )n is

r · T M(0, 1)n = r ·

∞∑
i=1

σ (i)
ni

=

∞∑
i=1

r · σ (i)
ni

= T M(0, r )n,

here σ (i) returns the i th letter in the Thue–Morse word.
Similarly, T M(0, n − 1)n is well-approximable if and only if T M(n − 1, 0)n is

ell-approximable. This follows from the following observation:

1 − T M(0, n − 1)n = 1 −

∞∑
i=1

(n − 1) · σ (i)
ni

=

∞∑
i=1

(n − 1) · (1 − σ (i))
ni

= T M(n − 1, 0)n.

Multiplying by k/(n − 1) shows that the number T M(k, 0)n is well-approximable for all
k ∈ {0, 1, . . . , n − 1} if and only if T M(n − 1, 0)n is well-approximable.

Furthermore, we note that for ℓ ∈ {0, 1, . . . , n − 1}, the real number whose base-
n expansion is an infinite string of ℓ’s corresponds to the rational number ℓ/(n − 1).
Therefore, if ℓ ≤ n − 1 − k, then

T M(0, k)n +
ℓ

n − 1
=

∞∑
i=1

k · σ (i)
ni

+

∞∑
i=1

ℓ

ni
=

∞∑
i=1

k · σ (i) + ℓ

ni
= T M(ℓ, ℓ+ k)n.

ikewise, T M(k, 0)n + ℓ/(n − 1) = T M(k + ℓ, ℓ)n . This, combined with the previous
rguments, shows that for all a, b ∈ {0, 1, . . . , n − 1} the real number T M(a, b)n is
ell-approximable if and only if T M(0, 1)n is well-approximable. Applying Theorem 4.3

ompletes the proof. □

.2. Proof of Theorem 2.13

Let µ be the Thue–Morse morphism. In order to prove Theorem 2.13, we will use
ection 3.2, Theorem 4.3, and the following two lemmas.



14 J. Blackman, S. Kristensen and M.J. Northey / Expo. Math. 42 (2024) 125548

w

L

L

P
f
l

u
c
i
w

i
2

F
e
i

Lemma 4.5. For every overlap-free word x ∈ {0, 1}
∗, there exist words u, v, y ∈ {0, 1}

∗

ith |u|, |v| ≤ 2 and x = uµ(y)v.

emma 4.6. Let y ∈ {0, 1}
∗. Then y is overlap-free if and only if µ(y) is overlap-free.

For Lemma 4.5, see [11, Theorem 6.4] or [1, Lemma 3]. For Lemma 4.6, see [2,
emma 1.7.4].

roof of Theorem 2.13. In order to prove this result, we will show that every overlap-
ree base-2 expansion of length K contains a prefix of M or M̃ of length p(K ), where
imK→∞ p(K ) = ∞. The result then follows from Proposition 2.5 and Theorem 4.3.

Let x be an overlap-free word of length K . By Lemma 4.5, there exist words
1, v1, y1 ∈ {0, 1}

∗ with |u1|, |v1| ≤ 2 and x = u1µ(y1)v1. Using this construction, we
an conclude that |µ(y1)| = K − |u| − |v| ≥ K − 4. Furthermore, since µ is 2-uniform,
.e., |µ(0)| = |µ(1)| = 2, the length of y1 is equal to |µ(y1)|/2. Provided that K −4 ≥ 1,
e also have that y1 is not the empty word.
Since x is overlap-free, it follows that µ(y1) is overlap-free. Additionally, Lemma 4.6

mplies that y1 is overlap-free. As a result, there exist u2, v2, y2 ∈ {0, 1}
∗ with |u2|, |v2| ≤

such that y1 = u2µ(y2)v2. Then x can be rewritten as

x = u1µ(y1)v1 = u1µ(u2)µ2(y2)µ(v2)v1.

The length of y2 is bounded as follows:

|y1| − 4
2

≤ |y2| ≤
|y1|

2
.

More generally, for any k ∈ N, the subword yk can be rewritten as

yk = uk+1µ(yk+1)vk+1,

where uk+1, vk+1, yk+1 ∈ {0, 1}
∗, |uk+1|, |vk+1| ≤ 2 and

|yk | − 4
2

≤ |yk+1| ≤
|yk |

2
.

Note that uk+1, vk+1 and yk+1 can all be the empty word.
Using this substitution, x can be rewritten in terms of yk as

x = u1µ(u2) · · ·µk−1(uk)µk(yk)µk−1(vk) · · ·µ(v2)v1,

where the length of yk is bounded below:

|yk | ≥
K − 4 · (2k

− 1)
2k

. (8)

From (8), the word yk is non-empty provided that K −4 ·(2k
−1) > 0. By rearranging,

the largest value of k that guarantees that yk is non-empty is k = ⌊log2(K + 4)⌋ − 2.
or such a value of k, let a be any subword of yk of length 1. Then µk(a) is a prefix of
ither M or M̃ . Since µ is 2-uniform and |a| = 1, it follows that the length of this prefix
s

|µk(a)| ≥ 2k
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C

≥ 2(log2(K+4)−3)

=
K + 4

8
.

Since limK→∞(K + 4)/8 = ∞, the result follows. □
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