200 research outputs found

    Design uncertainty for a HELIAS 5-B stellarator fusion power plant

    Get PDF

    Freeze-thaw treatment effects on the dynamic mechanical properties of articular cartilage

    Get PDF
    BACKGROUND: As a relatively non-regenerative tissue, articular cartilage has been targeted for cryopreservation as a method of mitigating a lack of donor tissue availability for transplant surgeries. In addition, subzero storage of articular cartilage has long been used in biomedical studies using various storage temperatures. The current investigation studies the potential for freeze-thaw to affect the mechanical properties of articular cartilage through direct comparison of various subzero storage temperatures. METHODS: Both subzero storage temperature as well as freezing rate were compared using control samples (4°C) and samples stored at either -20°C or -80°C as well as samples first snap frozen in liquid nitrogen (-196°C) prior to storage at -80°C. All samples were thawed at 37.5°C to testing temperature (22°C). Complex stiffness and hysteresis characterized load resistance and damping properties using a non-destructive, low force magnitude, dynamic indentation protocol spanning a broad loading rate range to identify the dynamic viscoelastic properties of cartilage. RESULTS: Stiffness levels remained unchanged with exposure to the various subzero temperatures. Hysteresis increased in samples snap frozen at -196°C and stored at -80°C, though remained unchanged with exposure to the other storage temperatures. CONCLUSIONS: Mechanical changes shown are likely due to ice lens creation, where frost heave effects may have caused collagen damage. That storage to -20°C and -80°C did not alter the mechanical properties of articular cartilage shows that when combined with a rapid thawing protocol to 37.5°C, the tissue may successfully be stored at subzero temperatures

    A z = 2.5 protocluster associated with the radio galaxy MRC 2104-242: star formation and differing mass functions in dense environments

    Get PDF
    We present results from a narrow-band survey of the field around the high-redshift radio galaxy MRC 2104−242. We have selected Hα emitters in a 7 arcmin2 field and compared the measured number density with that of a field sample at similar redshift. We find that MRC 2104−242 lies in an overdensity of galaxies that is 8.0 ± 0.8 times the average density of a blank field, suggesting it resides in a large-scale structure that may eventually collapse to form a massive cluster. We find that there is more dust obscured star formation in the protocluster galaxies than in similarly selected control field galaxies and there is tentative evidence of a higher fraction of starbursting galaxies in the denser environment. However, on average we do not find a difference between the star formation rate (SFR)–mass relations of the protocluster and field galaxies and so conclude that the SFR of these galaxies at z ∼ 2.5 is governed predominantly by galaxy mass and not the host environment. We also find that the stellar mass distribution of the protocluster galaxies is skewed towards higher masses and there is a significant lack of galaxies at M 1010.5M_) galaxies, the density of the protocluster field increases to ∼55 times the control field density

    The structure and evolution of a forming galaxy cluster at z = 1.62

    Get PDF
    We present a comprehensive picture of the Cl 0218.3−0510 protocluster at z = 1.623 across 10 comoving Mpc. Using filters that tightly bracket the Balmer and 4000 Å breaks of the protocluster galaxies we obtain precise photometric redshifts resulting in a protocluster galaxy sample that is 89 ± 5 per cent complete and has a contamination of only 12 ± 5 per cent. Both star-forming and quiescent protocluster galaxies are located, which allows us to map the structure of the forming cluster for the first time. The protocluster contains six galaxy groups, the largest of which is the nascent cluster. Only a small minority of the protocluster galaxies are in the nascent cluster (11 per cent) or in the other galaxy groups (22 per cent), as most protocluster galaxies reside between the groups. Unobscured star-forming galaxies predominantly reside between the protocluster’s groups, whereas red galaxies make up a large fraction of the groups’ galactic content, so observing the protocluster through only one of these types of galaxies results in a biased view of the protocluster’s structure. The structure of the protocluster reveals how much mass is available for the future growth of the cluster and we use the Millennium Simulation, scaled to a Planck cosmology, to predict that Cl 0218.3−0510 will evolve into a 2.7+3.9 −1.7 × 1014M cluster by the present day

    The formation history of massive cluster galaxies as revealed by CARLA

    Get PDF
    We use a sample of 37 of the densest clusters and protoclusters across 1.3 ≤ z ≤ 3.2 from the Clusters Around Radio-Loud AGN (CARLA) survey to study the formation of massive cluster galaxies. We use optical i′-band and infrared 3.6 and 4.5 μm images to statistically select sources within these protoclusters and measure their median observed colours; 〈i′ − [3.6]〉. We find the abundance of massive galaxies within the protoclusters increases with decreasing redshift, suggesting these objects may form an evolutionary sequence, with the lower redshift clusters in the sample having similar properties to the descendants of the high-redshift protoclusters. We find that the protocluster galaxies have an approximately unevolving observed-frame i′ − [3.6] colour across the examined redshift range. We compare the evolution of the 〈i′ − [3.6]〉 colour of massive cluster galaxies with simplistic galaxy formation models. Taking the full cluster population into account, we show that the formation of stars within the majority of massive cluster galaxies occurs over at least 2 Gyr, and peaks at z ∼ 2–3. From the median i′ − [3.6] colours, we cannot determine the star formation histories of individual galaxies, but their star formation must have been rapidly terminated to produce the observed red colours. Finally, we show that massive galaxies at z > 2 must have assembled within 0.5 Gyr of them forming a significant fraction of their stars. This means that few massive galaxies in z > 2 protoclusters could have formed via dry mergers

    The impact of protocluster environments at z = 1.6

    Get PDF
    We investigate the effects of dense environments on galaxy evolution by examining how the properties of galaxies in the z = 1.6 protocluster Cl 0218.3−0510 depend on their location. We determine galaxy properties using spectral energy distribution fitting to 14-band photometry, including data at three wavelengths that tightly bracket the Balmer and 4000 Å breaks of the protocluster galaxies. We find that two-thirds of the protocluster galaxies, which lie between several compact groups, are indistinguishable from field galaxies. The other third, which reside within the groups, differ significantly from the intergroup galaxies in both colour and specific star formation rate. We find that the fraction of red galaxies within the massive protocluster groups is twice that of the intergroup region. These excess red galaxies are due to enhanced fractions of both passive galaxies (1.7 times that of the intergroup region) and dusty star-forming galaxies (3 times that of the intergroup region). We infer that some protocluster galaxies are processed in the groups before the cluster collapses. These processes act to suppress star formation and change the mode of star formation from unobscured to obscured

    Solving the puzzle of subhalo spins

    Get PDF
    Investigating the spin parameter distribution of subhalos in two high-resolution isolated halo simulations, recent work by Onions et al. suggested that typical subhalo spins are consistently lower than the spin distribution found for field halos. To further examine this puzzle, we have analyzed simulations of a cosmological volume with sufficient resolution to resolve a significant subhalo population. We confirm the result of Onions et al. and show that the typical spin of a subhalo decreases with decreasing mass and increasing proximity to the host halo center. We interpret this as the growing influence of tidal stripping in removing the outer layers, and hence the higher angular momentum particles, of the subhalos as they move within the host potential. Investigating the redshift dependence of this effect, we find that the typical subhalo spin is smaller with decreasing redshift. This indicates a temporal evolution, as expected in the tidal stripping scenario

    Comparison of the VIMOS-VLT Deep Survey with the Munich semi-analytical model. II. The colour-density relation up to z=1.5

    Get PDF
    [Abridged] We perform on galaxy mock catalogues the same colour-density analysis made by Cucciati et al. (2006) on a 5 Mpc/h scale using the VVDS-Deep survey, and compare the results from mocks with observed data. We use mocks with the same flux limits (I=24) as the VVDS (CMOCKS), built using the semi- analytic model by De Lucia & Blaizot (2007) applied to the Millennium Simulation. From CMOCKS, we extracted samples of galaxies mimicking the VVDS observational strategy (OMOCKS). We computed the B-band Luminosity Function LF and the colour-density relation (CDR) in the mocks. We find that the LF in mocks roughly agrees with the observed LF, but at z<0.8 the faint-end slope of the model LF is steeper than the VVDS one. Computing the LF for early and late type galaxies, we show that mocks have an excess of faint early-type and of bright late-type galaxies with respect to data. We find that the CDR in OMOCKS is in excellent agreement with the one in CMOCKS. At z~0.7, the CDR in mocks agrees with the VVDS one (red galaxies reside mainly in high densities). Yet, the strength of the CDR in mocks does not vary within 0.2<z<1.5, while the observed relation flattens with increasing z and possibly inverts at z=1.3. We argue that the lack of evolution in the CDR in mocks is not due only to inaccurate prescriptions for satellite galaxies, but that also the treatment of central galaxies has to be revised. The reversal of the CDR can be explained by wet mergers between young galaxies, producing a starburst event. This should be seen on group scales. A residual of this is found in observations at z=1.5 on larger scales, but not in the mocks, suggesting that the treatment of physical processes affecting satellites and central galaxies in models should be revised.Comment: 15 pages, 12 figures, accepted for publication in A&

    Rectification of the Water Permeability in COS-7 Cells at 22, 10 and 0°C

    Get PDF
    The osmotic and permeability parameters of a cell membrane are essential physico-chemical properties of a cell and particularly important with respect to cell volume changes and the regulation thereof. Here, we report the hydraulic conductivity, Lp, the non-osmotic volume, Vb, and the Arrhenius activation energy, Ea, of mammalian COS-7 cells. The ratio of Vb to the isotonic cell volume, Vc iso, was 0.29. Ea, the activation energy required for the permeation of water through the cell membrane, was 10,700, and 12,000 cal/mol under hyper- and hypotonic conditions, respectively. Average values for Lp were calculated from swell/shrink curves by using an integrated equation for Lp. The curves represented the volume changes of 358 individually measured cells, placed into solutions of nonpermeating solutes of 157 or 602 mOsm/kg (at 0, 10 or 22°C) and imaged over time. Lp estimates for all six combinations of osmolality and temperature were calculated, resulting in values of 0.11, 0.21, and 0.10 µm/min/atm for exosmotic flow and 0.79, 1.73 and 1.87 µm/min/atm for endosmotic flow (at 0, 10 and 22°C, respectively). The unexpected finding of several fold higher Lp values for endosmotic flow indicates highly asymmetric membrane permeability for water in COS-7. This phenomenon is known as rectification and has mainly been reported for plant cell, but only rarely for animal cells. Although the mechanism underlying the strong rectification found in COS-7 cells is yet unknown, it is a phenomenon of biological interest and has important practical consequences, for instance, in the development of optimal cryopreservation

    Haloes gone MAD: The Halo-Finder Comparison Project

    Full text link
    [abridged] We present a detailed comparison of fundamental dark matter halo properties retrieved by a substantial number of different halo finders. These codes span a wide range of techniques including friends-of-friends (FOF), spherical-overdensity (SO) and phase-space based algorithms. We further introduce a robust (and publicly available) suite of test scenarios that allows halo finder developers to compare the performance of their codes against those presented here. This set includes mock haloes containing various levels and distributions of substructure at a range of resolutions as well as a cosmological simulation of the large-scale structure of the universe. All the halo finding codes tested could successfully recover the spatial location of our mock haloes. They further returned lists of particles (potentially) belonging to the object that led to coinciding values for the maximum of the circular velocity profile and the radius where it is reached. All the finders based in configuration space struggled to recover substructure that was located close to the centre of the host halo and the radial dependence of the mass recovered varies from finder to finder. Those finders based in phase space could resolve central substructure although they found difficulties in accurately recovering its properties. Via a resolution study we found that most of the finders could not reliably recover substructure containing fewer than 30-40 particles. However, also here the phase space finders excelled by resolving substructure down to 10-20 particles. By comparing the halo finders using a high resolution cosmological volume we found that they agree remarkably well on fundamental properties of astrophysical significance (e.g. mass, position, velocity, and peak of the rotation curve).Comment: 27 interesting pages, 20 beautiful figures, and 4 informative tables accepted for publication in MNRAS. The high-resolution version of the paper as well as all the test cases and analysis can be found at the web site http://popia.ft.uam.es/HaloesGoingMA
    corecore