293 research outputs found

    The Relation Between Halo Shape, Velocity Dispersion and Formation Time

    Full text link
    We use dark matter haloes identified in the MareNostrum Universe and galaxy groups identified in the Sloan Data Release 7 galaxy catalogue, to study the relation between halo shape and halo dynamics, parametrizing out the mass of the systems. A strong shape-dynamics, independent of mass, correlation is present in the simulation data, which we find it to be due to different halo formation times. Early formation time haloes are, at the present epoch, more spherical and have higher velocity dispersions than late forming-time haloes. The halo shape-dynamics correlation, albeit weaker, survives the projection in 2D (ie., among projected shape and 1-D velocity dispersion). A similar shape-dynamics correlation, independent of mass, is also found in the SDSS DR7 groups of galaxies and in order to investigate its cause we have tested and used, as a proxy of the group formation time, a concentration parameter. We have found, as in the case of the simulated haloes, that less concentrated groups, corresponding to late formation times, have lower velocity dispersions and higher elongations than groups with higher values of concentration, corresponding to early formation times.Comment: MNRAS in press (10 pages, 10 figures

    Tryptophan depletion affects compulsive behaviour in rats:strain dependent effects and associated neuromechanisms

    Get PDF
    RATIONALE: Compulsive behaviour, present in different psychiatric disorders, such as obsessive-compulsive disorder, schizophrenia and drug abuse, is associated with altered levels of monoamines, particularly serotonin (5-hydroxytryptamine) and its receptor system. OBJECTIVES: The present study investigated whether 5-HT manipulation, through a tryptophan (TRP) depletion by diet in Wistar and Lister Hooded rats, modulates compulsive drinking in schedule-induced polydipsia (SIP) and locomotor activity in the open-field test. The levels of dopamine, noradrenaline, serotonin and its metabolite were evaluated, as well as the 5-HT(2A) and 5-HT(1A) receptor binding, in different brain regions. METHODS: Wistar rats were selected as high (HD) or low (LD) drinkers according to their SIP behaviour, while Lister hooded rats did not show SIP acquisition. Both strains were fed for 14 days with either a TRP-free diet (T−) or a TRP-supplemented diet (T+) RESULTS: The TRP depletion diet effectively reduced 5-HT levels in the frontal cortex, amygdala and hippocampus in both strains of rats. The TRP-depleted HD Wistar rats were more sensitive to 5-HT manipulation, exhibiting more licks on SIP than did the non-depleted HD Wistar rats, while the LD Wistar and the Lister Hooded rats did not exhibit differences in SIP. In contrast, the TRP-depleted Lister Hooded rats increased locomotor activity compared to the non-depleted rats, while no differences were found in the Wistar rats. Serotonin 2A receptor binding in the striatum was significantly reduced in the TRP-depleted HD Wistar rats. CONCLUSIONS: These results suggest that alterations of the serotonergic system could be involved in compulsive behaviour in vulnerable populations

    The origin of redshift asymmetries: How LambdaCDM explains anomalous redshift

    Full text link
    Several authors have found a statistically significant excess of galaxies with higher redshifts relative to the group centre, so-called discordant redshifts, in particular in groups where the brightest galaxy, identified in apparent magnitudes, is a spiral. Our aim is to explain the observed redshift excess. We use a semi-analytical galaxy catalogue constructed from the Millennium Simulation to study redshift asymmetries in spiral-dominated groups in the Lambda cold dark matter (LambdaCDM) cosmology. We show that discordant redshifts in small galaxy groups arise when these groups are gravitationally unbound and the dominant galaxy of the group is misidentified. The redshift excess is especially significant when the apparently brightest galaxy can be identified as a spiral, in full agreement with observations. On the other hand, the groups that are gravitationally bound do not show a significant redshift asymmetry. When the dominant members of groups in mock catalogues are identified by using the absolute B-band magnitudes, our results show a small blueshift excess. This result is due to the magnitude limited observations that miss the faint background galaxies in groups. When the group centre is not correctly identified it may cause the major part of the observed redshift excess. If the group is also gravitationally unbound, the level of the redshift excess becomes as high as in observations. There is no need to introduce any "anomalous" redshift mechanism to explain the observed redshift excess. Further, as the Friends-of-Friends percolation algorithm picks out the expanding parts of groups, in addition to the gravitationally bound group cores, group catalogues constructed in this way cannot be used as if the groups are purely bound systems.Comment: Accepted for publication in A&

    The evolutionary state of Miras with changing pulsation periods

    Full text link
    Context: Miras are long-period variables thought to be in the asymptotic giant branch (AGB) phase of evolution. In about one percent of known Miras, the pulsation period is changing. It has been speculated that this changing period is the consequence of a recent thermal pulse in these stars. Aims: We aim to clarify the evolutionary state of these stars, and to determine in particular whether or not they are in the thermally-pulsing (TP-)AGB phase. Methods: One important piece of information that has been neglected so far when determining the evolutionary state is the presence of the radio-active s-process element technetium (Tc). We obtained high-resolution, high signal-to-noise-ratio optical spectra of a dozen prominent Mira variables with changing pulsation period to search for this indicator of TPs and dredge-up. We also use the spectra to measure lithium (Li) abundances. Furthermore, we establish the evolutionary states of our sample stars by means of their present-day periods and luminosities. Results: Among the twelve sample stars observed in this programme, five were found to show absorption lines of Tc. BH Cru is found to be a carbon-star, its period increase in the past decades possibly having stopped by now. We report a possible switch in the pulsation mode of T UMi from Mira-like to semi-regular variability in the past two years. R Nor, on the other hand, is probably a fairly massive AGB star, which could be true for all meandering Miras. Finally, we assign RU Vul to the metal-poor thick disk with properties very similar to the short-period, metal-poor Miras. Conclusions: We conclude that there is no clear correlation between period change class and Tc presence. The stars that are most likely to have experienced a recent TP are BH Cru and R Hya, although their rates of period change are quite different.Comment: 11 pages, 7 figures, 2 tables; accepted for publication in A&

    Galaxy interactions II: High density environments

    Full text link
    With the aim to assess the role of dense environments in galaxy interactions, properties we present an analysis of close galaxy pairs in groups and clusters, obtained from the Sloan Digital Sky Survey Data Release 7 (SDSS-DR7). We identified pairs that reside in groups by cross-correlating the total galaxy pair catalogue with the SDSS-DR7 group catalogue from Zapata et al. (2009). We classify pair galaxies according to the intensity of interaction. We analysed the effect of high density environments on different classes of galaxy-galaxy interactions and we have also studied the impact of the group global environment on pair galaxies. We find that galaxy pairs are more concentrated towards the group centres with respect to the other group galaxy members, and disturbed pairs show a preference to contain the brightest galaxy in the groups. The color-magnitude relation exhibits significant differences between pair galaxies and the control sample, consisting in color tails with a clear excess of extremely blue and red galaxies for merging systems. In addition, pair galaxies show a significant excess of young stellar populations with respect to galaxies in the control sample; this finding suggests that, in dense environments, strong interactions produce an important effect in modifying galaxy properties. We find that the fraction of star forming galaxies decreases toward the group centre; however, galaxy pairs show a more efficient star formation activity than galaxies without a close companion. We have also found that pair galaxies prefer groups with low density global environments with respect to galaxies of the corresponding control sample. Blue, young stellar population galaxies prefer groups within low density global environments.Comment: 10 pages, 11 figures, accepted for publication in A&

    The evolution of galaxy groups and of galaxies therein

    Full text link
    Properties of groups of galaxies depend sensitively on the algorithm for group selection, and even the most recent catalogs of groups built from redshift-space selection should suffer from projections and infalling galaxies. The cosmo-dynamical evolution of groups from initial Hubble expansion to collapse and virialization leads to a fundamental track (FT) in virial-theorem-M/L vs crossing time. The increased rates of mergers, both direct and after dynamical friction, in groups relative to clusters, explain the higher fraction of elliptical galaxies at given local number density in X-ray selected groups, relative to clusters, even when the hierarchical evolution of groups is considered. Galaxies falling into groups and clusters should later travel outwards to typically 2 virial radii, which is somewhat less than the outermost radius where observed galaxy star formation efficiencies are enhanced relative to field galaxies of same morphological type. An ongoing analysis of the internal kinematics of X-ray selected groups suggests that the radial profiles of line of sight velocity dispersion are consistent with isotropic NFW distributions for the total mass density, with higher (lower) concentrations than LambdaCDM predictions in groups of high (low) mass. The critical mass, at M200 ~ 10^13 M_sun is consistent with possible breaks in the X-ray luminosity-temperature and Fundamental Plane relations. The internal kinematics of groups indicate that the M-T relation of groups should agree with that extrapolated from clusters with no break at the group scale. The analyses of observed velocity dispersion profiles and of the FT both suggest that low velocity dispersion groups (compact and loose, X-ray emitting or undetected) are quite contaminated by chance projections.Comment: Invited review, ESO workshop "Groups of Galaxies in the Nearby Universe", held in Santiago, Chile, 5-9 December 2005, ed. I. Saviane, V. Ivanov & J. Borissova, 16 page

    The architecture of Abell 1386 and its relationship to the Sloan Great Wall

    Full text link
    We present new radial velocities from AAOmega on the Anglo-Australian Telescope for 307 galaxies (b_J < 19.5) in the region of the rich cluster Abell 1386. Consistent with other studies of galaxy clusters that constitute sub-units of superstructures, we find that the velocity distribution of A1386 is very broad (21,000--42,000 kms^-1, or z=0.08--0.14) and complex. The mean redshift of the cluster that Abell designated as number 1386 is found to be ~0.104. However, we find that it consists of various superpositions of line-of-sight components. We investigate the reality of each component by testing for substructure and searching for giant elliptical galaxies in each and show that A1386 is made up of at least four significant clusters or groups along the line of sight whose global parameters we detail. Peculiar velocities of brightest galaxies for each of the groups are computed and found to be different from previous works, largely due to the complexity of the sky area and the depth of analysis performed in the present work. We also analyse A1386 in the context of its parent superclusters: Leo A, and especially the Sloan Great Wall. Although the new clusters may be moving toward mass concentrations in the Sloan Great Wall or beyond, many are most likely not yet physically bound to it.Comment: 21 pages, 9 figures, includes the full appendix table. Accepted for publication in MNRA

    A theory of nonvertical triplet energy transfer in terms of accurate potential energy surfaces: The transfer reaction from π,π∗ triplet donors to 1,3,5,7-cyclooctatetraene

    Get PDF
    Triplet energy transfer (TET) from aromatic donors to 1,3,5,7-cyclooctatetraene (COT) is an extreme case of “nonvertical” behavior, where the transfer rate for low-energy donors is considerably faster than that predicted for a thermally activated (Arrhenius) process. To explain the anomalous TET of COT and other molecules, a new theoretical model based on transition state theory for nonadiabatic processes is proposed here, which makes use of the adiabatic potential energy surfaces (PES) of reactants and products, as computed from high-level quantum mechanical methods, and a nonadiabatic transfer rate constant. It is shown that the rate of transfer depends on a geometrical distortion parameter γ = (2g2/κ1)1/2 in which g stands for the norm of the energy gradient in the PES of the acceptor triplet state and κ1 is a combination of vibrational force constants of the ground-state acceptor in the gradient direction. The application of the model to existing experimental data for the triplet energy transfer reaction to COT from a series of π,π∗ triplet donors, provides a detailed interpretation of the parameters that determine the transfer rate constant. In addition, the model shows that the observed decrease of the acceptor electronic excitation energy is due to thermal activation of C�C bond stretchings and C–C bond torsions, which collectively change the ground-state COT bent conformation (D2d) toward a planar triplet state (D8h)[email protected]

    Galaxy clusters identified from the SDSS DR6 and their properties

    Full text link
    Clusters of galaxies in most previous catalogs have redshifts z<0.3. Using the photometric redshifts of galaxies from the Sloan Digital Sky Survey Data Release 6 (SDSS DR6), we identify 39,668 clusters in the redshift range 0.05< z <0.6 with more than eight luminous (M_r<-21) member galaxies. Cluster redshifts are estimated accurately with an uncertainty less than 0.022. The contamination rate of member galaxies is found to be roughly 20%, and the completeness of member galaxy detection reaches to ~90%. Monte Carlo simulations show that the cluster detection rate is more than 90% for massive (M_{200}>2\times10^{14} M_{\odot}) clusters of z<0.42. The false detection rate is ~5%. We obtain the richness, the summed luminosity, and the gross galaxy number within the determined radius for identified clusters. They are tightly related to the X-ray luminosity and temperature of clusters. Cluster mass is related to the richness and summed luminosity with M_{200}\propto R^{1.90\pm0.04} and M_{200}\propto L_r^{1.64\pm0.03}, respectively. In addition, 685 new candidates of X-ray clusters are found by cross-identification of our clusters with the source list of the ROSAT X-ray survey.Comment: 18 pages, 27 figures, 2 tables. Further modefication on Table 1 and Table 2 after formal publication on ApJS. No changes on conclusions except for the number of clusters we found. The updated tables are available at "http://159.226.88.6/zmtt/wzl/CV_wen.htm

    Olives and olive oil production in the Alto Ricaurte climate region in Boyaca, Colombia

    Get PDF
    The olive tree has expanded to several countries because of its easy adaptation to difficult edapho-climatic zones and high culinary and medicinal interest given the physicochemical composition of its fruit, including Argentina, Chile, Peru and Mexico, which have similar soil and climate conditions to the Mediterranean, where the phenological stages correspond to clearly distinct climatic seasons. However, in the Alto Ricaurte region in Boyaca, Colombia, olives do not set because of the tropical climate conditions. Because of these characteristics, the behavior of some trees, sown 4 to 30 years ago in this region, were evaluated. The temperature and precipitation were measured, and 20 branches were selected per tree, which were monitored from appearance until development; the polar and equatorial diameter of the fruits were measured until reaching maturation. A fruit and oil analysis was carried out with olives harvested in two maturation states in 2017. The temperature had a positive correlation with the phenological stages in a range of 11 to 29°C, which directly influenced the development of inflorescences and their performance. In the same year, there were two or more blooms with different intervals, where the same branch had inflorescences, flowers, freshly filled fruits and other mature fruits. As for the characteristics of the fruit and the oil, it was evident that the content of fatty acids was within the parameters required by the International Olive Council
    corecore