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Triplet energy transfer~TET! from aromatic donors to 1,3,5,7-cyclooctatetraene~COT! is an
extreme case of ‘‘nonvertical’’ behavior, where the transfer rate for low-energy donors is
considerably faster than that predicted for a thermally activated~Arrhenius! process. To explain the
anomalous TET of COT and other molecules, a new theoretical model based on transition state
theory for nonadiabatic processes is proposed here, which makes use of the adiabatic potential
energy surfaces~PES! of reactants and products, as computed from high-level quantum mechanical
methods, and a nonadiabatic transfer rate constant. It is shown that the rate of transfer depends on
a geometrical distortion parameterg5(2g2/k1)1/2 in which g stands for the norm of the energy
gradient in the PES of the acceptor triplet state andk1 is a combination of vibrational force
constants of the ground-state acceptor in the gradient direction. The application of the model to
existing experimental data for the triplet energy transfer reaction to COT from a series ofp,p*
triplet donors, provides a detailed interpretation of the parameters that determine the transfer rate
constant. In addition, the model shows that the observed decrease of the acceptor electronic
excitation energy is due to thermal activation of CvC bond stretchings and C–C bond torsions,
which collectively change the ground-state COT bent conformation (D2d) toward a planar triplet
state (D8h). © 2004 American Institute of Physics.@DOI: 10.1063/1.1631418#

I. INTRODUCTION

Triplet photosensitization, first characterized in con-
densed phases by Terenin and Ermolaev,1 is a common
mechanism in photoinitiated bimolecular reactions2,3

~Scheme 1!, in which the electronic energy of an initially
excited triplet donor (3D) is transferred to an acceptor sin-
glet state (1A) with an observed rate constantkexp

en :

Scheme 1:

3D11A ——→
kexp

en

1D13A

The actual transfer of triplet energy~TET! takes place in
the range of picoseconds4,5 by an electronic exchange
mechanism2,6 and, therefore, close approach of the two reac-
tants is required~,1 nm!. When the balance between the
energies of the donor and acceptor triplet states,
DET5ET

D2ET
A , is positive ~‘‘exothermic’’ TET! the ob-

served rate in fluid solution is nearly diffusion
controlled.2,5,7,8In the endothermic case (DET,0) the trans-
fer rate can still prevail over other triplet quenching channels
if the energy deficit is not too large (uDET

u'3 – 4 kcal/mol, 1 kcal54.183 kJ), as in a conventional
thermally activated Arrhenius process. This type of kinetics
was demonstrated by Sandros in a series of pioneering stud-
ies in solution,7 where the well-known expression for the rate
constant of the activated transfer was introduced:kexp

en

5k8 exp(2DET /RT).
On the other hand, it was realized at the outset9 that for

some acceptor compounds, such ascis-stilbene, the TET rate
of very endothermic processes~in the above-noted sense!
was considerably faster than that predicted by the Sandros
equation, an anomaly associated with acceptor molecules
with significant conformational flexibility. In that seminal
work the termnonverticalTET was also introduced, arguing
that donor–acceptor interactions result in the breakdown of
Franck–Condon restrictions in such a way that the acceptor
geometry changed concurrently with its excitation. This de-
manding interpretation has been replaced nowadays by morea!Electronic mail: luisma.frutos@uah.es
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conventional ‘‘hot-band’’ concepts,2,10–12in which ‘‘vertical’’
transitions from acceptor molecules, thermally activated
along specific torsional modes, account for an observed ex-
citation energy much lower than the ‘‘spectroscopic’’
T1←S0 value. Recent developments of this idea included the
consideration of more than a single potential energy
curve13,14 and, most remarkably, the definition of a rate con-
stant distribution function associated with the geometrical
deformation.15 An important difficulty in the hot-band quali-
tative analysis is, of course, the identification of the crucial
deforming vibrations that are most effective in lowering the
excitation energy.

Balzani and co-workers,16~a!,16~b! noting the similarity be-
tween electron and triplet energy transfer reactions, devel-
oped an expression for the molecular TET rate constant (ke)
as a function of thedriving forceDG0 ([DET) of the pro-
cess, and provided a comprehensive analysis of both normal
and nonvertical processes. In addition, Orlandiet al.16~c! pre-
sented an alternative quantum mechanical approach, based
on the treatment given by Ulstrup and Jortner for electron
transfer processes,17 in which ke is given by the product of
an electronic and a nuclear term:

ke5
2p

\
U2J, ~1!

whereU stands for the electronic exchange interaction andJ
~the nuclear term! is the Franck–Condon weighted density of
states, which normally contains the dependence on energy,
temperature, and solvent properties.

This last approach has been successfully applied to a
large variety of TET processes, as e.g., those giving rise to an
invertedregion18 and to triplet quenching through the walls
of hemicarcerands.19

Very recently, Serpaet al.20 discussed in great detail dif-
ferent formulations of the vibrational factorJ for TET, based
on the golden rule. On the other hand, there is no simple way
of computing theU2 value from first principles for the mo-
lecular systems of interest.21 Therefore, when a common ac-
ceptor is excited by a series of donors with ‘‘similar’’ struc-
ture, it is frequently assumed that theU2 value would remain
relatively constant.16~a!,16~b! According to that, the observed
variation of the rate constant has to be correlated with
changes in the overlap integralJ. Unfortunately, since the
spectral data required to compute theJ integral are available
only in a few cases, its value had to be estimated from dif-
ferent approximations to the true~unknown! spectra.20 In
nonvertical TET processes this estimation is even more dif-
ficult, because the conformation of the~flexible! acceptor is
assumed to change considerably on excitation to the triplet
state and the correspondingT1←S0 absorption would have a
very low transition probability. There are a few examples12

where the expected correlation betweenke and the vibra-
tional factor was not observed, indicating that either theU2

term cannot be taken as a constant in these experiments or
that the approximation used to computeJ was too unrealistic.

Here we present an alternative analysis of the nonverti-
cal TET processes, developed from the same ‘‘hot band’’
concept. The new approximation is based on the computation
of accurate adiabatic potential energy surfaces~PESs! for all

the states~singlet and triplet! involved in the transfer step,
combined with the use of transition state theory~TST!22 of
nonadiabatic processes23 to derive the rate constant for the
crossing between reactant and product surfaces. It is ex-
pected that, in this way, the relationship between the energy
dependency of the transfer rate and the acceptor conforma-
tional change may be better understood, and the crucial de-
forming molecular motions clearly identified. In addition, the
utility of this approximation is illustrated by its application to
the triplet energy transfer reaction of 1,3,5,7-
cyclooctatetraene~COT!, for which accurate PESs are now
available.24,25This cyclic, very flexible nonaromatic polyene
~COT! presents the first weak absorption band at 282 nm in
hexane solution,26 and the lowestT1←S0 transition in the
range of 65–70 kcal/mol, located by electron impact spec-
troscopy as a broad, weakly structured band.27 A more recent
estimate28 of the energy of the elusive COT triplet state, from
TET experiments in solution, yielded a value of 59 kcal/mol.
In contrast, a much lower value~41 kcal/mol! was derived
from kinetic experiments that included a reversible transfer
step.29 In the same work a long lifetime of 100ms was as-
signed to3COT in cyclohexane solution, which seems diffi-
cult to conciliate with the low energy of the relaxed triplet
state~;22 kcal/mol above theD2d ground state30! and the
noted molecular flexibility of the polyene.

Nowadays, COT is used as a sort of universal triplet
scavenger in organic dye lasers, because it can improve the
operation of lasing dyes with triplet energies as low as 40
kcal/mol.29 Not unexpectedly, when COT was used as accep-
tor for a series of triplet donors, a strong deviation from the
prediction of the Sandros equation was discovered,28 extend-
ing over a large span of the energy deficit~.20 kcal/mol!,
that reflects the large nonvertical behavior of the cyclic poly-
ene. This exceptional deviation was explained as due to tor-
sions around the annulene single bonds, which might largely
decrease the energy required to populate the triplet state.28

The interpretation of the experimental TET data of COT
requires an expression for the transfer rate constant as a func-
tion of the triplet energy of a series of donor molecules. This
expression is derived here from the following sequence. In a
first step we introduce the adiabatic PES of the reactant and
product collision complex; a gradient difference vector is
defined, that yields the difference between the energy gradi-
ent in each of the two PESs. The interaction leading to sur-
face crossing and triplet energy transfer is usually explained
as due to electron exchange~Dexter mechanism6! and de-
pends on the proximity between donor and acceptor mol-
ecules. Consequently, we next define an electron coupling
vector, which yields the extent of this interaction. These two
vectors are assigned to well-defined nuclear coordinates of
the encounter complex. In a second step, the rate constant for
the crossing reaction is obtained, based on the nonadiabatic
formulation of transition-state theory. Finally, the activation
energy of the transfer process is derived as a function of the
donor triplet energy for the case of nonvertical behavior.

1209J. Chem. Phys., Vol. 120, No. 3, 15 January 2004 Triplet energy transfer processes

Downloaded 29 Jan 2010 to 147.156.182.23. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



II. RESULTS AND DISCUSSION

A. The potential energy surfaces
of the triplet energy transfer reaction

The transfer reaction~Scheme 1! can be formally
expanded16 to separate the diffusive (kd , k2d ,) and energy
transfer steps (ke , k2e) as:

Scheme 2:

3D11A�
k2d

kd

@3D¯

1A#�
k2e

ke

@1D¯

3A#�
kd

k2d
1D13A

The transfer process involves only the PES of reactant
@3D¯

1A# and product @1D¯

3A# encounter complexes,
which can be considered as a supermolecule in two different
electronic states@Fig. 1~a!# ~in the following the more con-
venient@* D¯A# @D¯* A# symbols will be used!. The en-
ergy transfer process consists on the passage of the system
from the first to the second state. It is assumed here that
long-lived exciplexes are not formed in the TET reaction in
solution,11 due to the weak donor–acceptor interaction. If
this interaction is negligible, the relative energy of each com-
plex would be given byE@* D¯A#5E(* D)1E(A) and
E@D¯* A#5E(D)1E(* A). However, when the two PESs
are near isoenergetic some sort of interaction must be present
for the crossing to occur, and a coupling correction to the
energy should be introduced.

The PES of each collision complex is a space function of
internal coordinates only, withF degrees of freedom, given
by F53(ND1NA)26, whereND(A) is the number of atoms
of the donor~acceptor!, each with its associated coordinate.
The total number of coordinates,Q, is separated here in two
groups,Q5$Qr ,t ,Qn%, whereQr ,t defines the relative posi-

tion of donor and acceptor~three coordinates for translation
and three for rotation! and Qn corresponds to all molecular
vibrations @3(ND1NA)212#. In the transfer step, the spin
and spatial symmetry of the total wave function is preserved,
resulting in an avoided crossing in the regions approaching
energy degeneracy31 @Fig. 1~b!#. The two special dimensions
where the energy degeneracy disappears are defined by the
electronic coupling (vEC) and gradient difference (vGD) vec-
tors. The first one~EC! indicates the maximum coupling
strength, while the second~GD! gives the difference between
the energy gradient vectors of the PES of two complexes at a
given nuclear configuration:@* D¯A# and @D¯* A# ~vide
infra!. In the following paragraphs each vector is assigned to
a well-defined subspace of coordinates.

The electron exchange between donor and acceptor
is expressed by the coupling matrix term
Hi f 5^C@* D¯A#uĤ8uC@D¯A* #& ( i 5 initial, f 5final) in
which

Ĥ85(
i , j

1

r i j

is the electronic coupling Hamiltonian, where the indicesi,j
denote the donor and acceptor electrons, respectively. In a
first-order approximation, the wave functions can be taken as
C@* D¯A#5`c* DcA , and C@D¯* A#5`cDc* A, where c
stands for the electronic wave function of the isolated mol-
ecules, and̀ is a permutation operator which acts antisym-
metrizing the wave function product under the permutation
betweeni and j electrons.6~c! The molecular wave functions,
in a first approximation, can be taken as those of the highest
occupied molecular orbital~HOMO! and lowest unoccupied
molecular orbital~LUMO! of both the singlet and the triplet
states of the reacting molecules.6~b! According to that,Hi f is
a function only of the relative position of the donor and
acceptor, given by theQr ,t coordinates, because the change
on the electronic orbital overlap due to internal vibrations is
expected to be comparatively much less important. There-
fore, the electronic coupling vector (vEC) would depend only
on the relative position of donor and acceptor, that is, on the
Qr ,t coordinates. Thus, for a given nuclear configurationQ
the electronic coupling vector is given by

vEC5 (
m51

6

umS ]Hi f ~Qr ,t!

]qm
D

Q

, qmPQr ,t , ~2!

whereum is the corresponding unit vector andHi f the cou-
pling energy between initial and final states.

It could also be possible to include an additional vi-
bronic ~derivative! coupling term into the Hamiltonian, be-
cause of the eventual near-degeneration of the PESs of the
two electronic states. However, the contribution of the vi-
bronic coupling to the electronic energy would be only a
small fraction of the electronic one. This can be shown in a
qualitative way as follows:

In terms of perturbation theory, the vibronic coupling
term can be formulated as

FIG. 1. The triplet energy transfer reaction as pictured by the crossing
between the potential energy surfaces~PES! of the donor–acceptor@D¯A#
collision complex.~a! The potential energy surface as a function of the
molecular vibrational coordinates (Qn). ET

D andET
A are the~optical! excita-

tion energies of the donor and acceptor triplet states, respectively;E0
† is the

energy at the crossing point of the adiabatic PES;Hi f represents the ampli-
tude ~exaggerated! of the electron exchange interaction andDG the free
energy of the process.~b! Another perspective of the PES, now as a function
of the donor–acceptor relative position, given by theQr ,t coordinates. The
arrows labeled as EC and GD show the direction of electronic coupling and
energy gradient difference vectors, respectively. The avoided crossing due to
electron exchange coupling perturbation (Hi f ) results in the lowering of the
energy barrier between reactants@* D¯A# and products@D¯* A#, com-
pared with that in the adiabatic PES.
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Wi f 5^C@* D¯A#u (
i 5r ,t,n

]

]Qi
uC@D¯A* #&

'U^C@* D¯A#u (
i 5r ,t,n

]~HD
0 1HA

01H8!

]Qi
u

3C@D¯A* #&U, ~3!

where HA,D
0 is the electronic Hamiltonian of the isolated

molecule andH8 is the electronic coupling defined earlier. If
the internal conversion rate in each isolated molecule is neg-
ligible ~otherwise the triplet energy transfer process would
not occur!, the first two terms in the sum of Eq.~3! vanish,
that is

^C@* D¯A#u (
i 5r ,t,n

]~HD,A
0 !

]Qi
uC@D¯A* #&50,

and the resultant expression would be

Wi f 'U^C@* D¯A#u(
i , j

]r i j
21

]Qr ,t
uC@D¯A* #&U. ~4!

Taking r i j 5R as a constant~the average distance be-
tween electrons! Eq. ~4! can be further simplified to give

Wi f 'U^C@* D¯A#u
]R21

]Qr ,t
uC@D¯A* #&U

5uR22^C@* D¯A#uC@D¯A* #&u

5R22Si f ~Qr ,t!, ~5!

whereSi f represents the electron orbital overlap as a function
of the donor–acceptor relative position coordinates,Qr ,t .
Since in the present approximation the dependence of the
electronic coupling on electron separation~R! is given by
Hi f 'R21Si f , the contribution of the vibronic termWi f to
the total electronic energy would be very small for the same
value of the electron separation. In summary, the coupling
interaction between reactants and products PES arise essen-
tially from electron exchange, with a small contribution from
vibronic coupling. The components of the vector associated
with this interaction (vEC) extend only over rotational and
translational coordinates (Qr ,t) describing the proximity of
donor/acceptor within the collision complex.

On the other hand, the energy gradient vector for the two
encounter complexes and, therefore, the energy gradient dif-
ference vector depends only on internal~vibrational! coordi-
nates, because the donor–acceptor interaction in the transfer
process is so weak that no new bonds are formed~that might
store energy!. Accordingly, the energy gradient difference
would not depend significantly on the donor–acceptor rela-
tive position:

S ]~E@* D¯A#2E@D¯A* #!

]qm
D

Q

'0, qmP$Qr ,t% ,

for any configurationQ.

Hence, the energy gradient difference vector for a configu-
ration Q can be defined as

vGD5 (
m51

N

umS ]~E@* D¯A#2E@D¯A* #!

]qm
D

Q

, qmPQn . ~6!

In conclusion, thevEC vector is associated with theQr ,t sub-
set of coordinates, whilevGD is associated with the vibra-
tional subsetQn .

B. The energy transfer rate constant

The rate constant for the crossing between reactants and
products energy surfaces can be expressed from transition
state theory22 as

ke5x
f Þ

f 1f 2¯

kBT

h
expS 2

V0

kBTD , ~7!

where f Þ is the partition function of the activated complex
and f i the partition functions of reactants and products,V0 is
the activated complex energy,x the transmission coefficient,
and the other symbols have the usual meaning.

The crossing step can be described as a nonadiabatic
transition in a weakly coupled system.32 In that case, the
value ofx is well described by23

x.
4pHi f

2

\vusf2si u
, ~8!

wherev is the relative velocity with which the system passes
the point of closest approach andusf2si u is the absolute
magnitude of the difference between the energy gradient of
the two crossing surfaces. The weakly allowed nonadiabatic
crossing results in a lower energy barrier compared with that
corresponding to the intersection of adiabatic surfaces (E0

†),
that is: V05E0

†2Hi f @Fig. 1~b!#. Accordingly, the rate con-
stant for nonadiabatic crossing becomes

ke5
4pHi f

2

\vusf2si u
f Þ

f 1f 2¯

kT

h
expS Hi f

kBTDexpS 2
E0

†

kBTD , ~9!

where E0
† is the activated complex energy that would be

obtained fromadiabaticPES. As noted earlier, the value of
E0

† does not depend on the donor–acceptor separation within
the collision complex, while that ofHi f changes very rapidly
~exponentially! with that distance. Moreover, since
Hi f ,kBT, the exponential termeHi f /kBT'1 and the rate
constant given by Eq.~9! shows the exponential dependence
with the donor–acceptor distance observed in simple
systems.6~b!,33

C. The energy of the activated complex

In this section the value of the energy of the activated
complex would be derived, as a function of the triplet energy
of the donor. The coupling termHi f @Eq. ~9!# depends only
on the orbital overlap and, therefore, it is independent of the
donor energy. According to that, one only needs to determine
the dependence ofE0

† ~the adiabaticcomponent of the acti-
vation energy! on the triplet donor energy. For moderate tem-
peratures, the potential energy of the complex in the initial
state,@* D¯A#, defined asE0(Q)[E@* D¯A# (Qn), is well
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represented classically as a function of electronic energies

Eelec
A,* D , vibrational coordinates (qm,n

A,D), and harmonic force

constants (kmn
A,* D) by

E0~Q!5E0~q1
A ,q2

A ,...,q3NA26
A ,q1

D ,q2
D ,...,q3ND26

D !

5Eelec
A 1E

elec

* D
1

1

2 (
m

3NA26

(
n

3NA26

kmn
A qm

Aqn
A

1
1

2 (
m

3ND26

(
n

3ND26

k
mn

* D
qm

Dqn
D1¯ , ~10!

where

kmn
A,* D5S ]2E0

]qm
D,A]qn

D,AD
e

.

The e subscript is used here to identify the equilibrium con-
figuration of the@* D¯A# complex. As noted earlier, due to
the very weak coupling there is no accumulation of energy in
the other subset of degrees of freedomQr ,t .

Similarly, the potential energy surface of the complex
in the final state, @D¯A* #, defined as E1(Q)
[E@D¯A* #(Qn), can be expressed by

E1~Q!5E1~q1
A ,q2

A ,...,q3NA26
A ,q1

D ,q2
D ,...,q3ND26

D !

5E
elec

* A
1Eelec

D 1 (
m51

3NA26

a
m

* A
qm

A1 (
m51

3ND26

am
Dqm

D

1
1

2 (
m

3NA26

(
n

3NA26

k
mn

* A
qm

Aqn
A

1
1

2 (
m

3ND26

(
n

3ND26

kmn
D qm

Dqn
D1¯ , ~11!

where

a
m

* A
5S ]E1

]qm
AD

e

, am
D5S ]E1

]qm
DD

e

,

k
mn

* A,D
5S ]2E1

]qm
A,D]qn

A,DD
e

.

Equation~11! corresponds to expansion of the@D¯A* #
PES up to the quadratic terms, using the same origin and set
of coordinates as those of Eq.~10!.

In the crossing spaceE0(Q)5E1(Q) and, therefore,
from Eqs.~7! and ~8! we have

ET
D2ET

A5 (
m51

3NA26

a
m

* A
qm

A1 (
m51

3ND26

am
Dqm

D

1
1

2 (
m51

3NA26

(
n51

3NA26

~k
mn

* A
2kmn

A !qm
Aqn

A

1
1

2 (
m51

3ND26

(
n51

3ND26

~kmn
D 2k

mn

* D
!qm

Dqn
D1¯ , ~12!

where

ET
A[~E

elec

* A
2Eelec

A ! and ET
D[~E

elec

* D
2Eelec

D !.

In those cases where the first, linear term provides the largest
contribution to the energy difference, Eq.~12! can be greatly
simplified to yield

ET
D2ET

A' (
m51

3NA26

a
m

* A
qm

A1 (
m51

3ND26

am
Dqm

D . ~13!

This expression shows that the energy difference between
donor and acceptor triplet states at the crossing region of the
PES is matched by thermal activation of the internal degrees
of freedom of the two reactants. It is clear that Eq.~13!
would be more accurate the larger the value of theam,n* A,D

coefficients. In fact, these coefficients are the components of
the energy gradient vector in the complex final state after a
vertical excitation; a large gradient value~i.e., largea coef-
ficients! indicates an important change in the conformation
of D, A or both in the transfer process. This is precisely one
of the characteristics of nonvertical processes, as discussed
earlier, in which the deviation from the ‘‘normal’’ TET was
associated with a flexible acceptor structure.34 On the other
hand, it should be noted that a large conformational change
does not imply necessarily a large energy gradient.

Another distinctive property of the acceptor singlet state
in nonvertical TET reactions is that small changes in vibra-
tional coordinates (qi) result in large changes on the energy
deficit ET

A2ET
D , which also contributes to the accuracy of

the approximation in Eq.~13!.
The triplet energy transfer processes of interest here are

those involving flexible acceptor molecules~as, e.g.,cis-
stilbene and COT!. Therefore, Eq.~13!, can be further sim-
plified for those cases in which the contribution of the donor
deformation to the change in the excitation energy is negli-
gible, to yield

ET
D2ET

A5 (
m51

3NA26

am*
Aqm

A . ~14!

Finally, Eq. ~14! can be recast in a new orthonormal
basis set, in which the gradient vector for the vertical exci-
tation of * A is one of the basis vectors, to give:

ET
A2ET

D5uguj1
A , ~15!

where

ugu5u¹W @E1~Q!#u5H (
m51

3NA26

~am
* A!2J 1/2

andj1
A is the coordinate along the gradient vector.

In the above expressionugu ([g) is the norm of the
gradient difference vector (vGD) between the gradient of the
T1 andS0 surfaces, i.e.,g5g(T1)2g(S0). Since the excita-
tion of the acceptorS0 state takes place from a configuration
close to the equilibrium position where the gradient is neg-
ligible, theg value corresponds essentially to the gradient of
the triplet state surface, only@g.g(T1)[g1#. According to
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this, the acceptor excitation energy in the new basis set de-
pends only on a single coordinatej1

A , which is that of the
triplet acceptor gradient vector:

ET
A2ET

D5g1j1
A . ~16!

This can be considered as the generalization of the
above-discussed ‘‘hot-band’’ concept, because, as shown by
Eq. ~16!, the energy deficit can be lessened by geometrical
distortions of the ground state acceptor along vibrational co-
ordinates (j1

A) that correspond to a large change in the down-
ward slope of the triplet potential energy surface. Distortions
in other directions are orthogonal vectors to the gradientg
and, therefore, do not contribute, in this formalism, to the
energy expansion in Eq.~15!. In addition, it becomes clear
that the whole set of components of the gradient vector
~bond stretchings, torsions, and bendings! is the important
factor in determining the acceptor excitation energy.

The vibrational energy (E0,vib) of the initial complex
@* D¯A# can be obtained from Eq.~10! by subtracting from
the total energy the electronic energy, to give

E0,vib5
1

2 (
m

3NA26

(
n

3NA26

kmn
A qm

Aqn
A

1
1

2 (
m

3ND26

(
n

3ND26

kmn* Dqm
Dqn

D1¯ . ~17!

This expression can also be redefined in a new basis set,
in which the coordinates arej1

A and those, for the acceptor
only, diagonalizing the Hessian matrix of the energy in the
subspace of coordinates orthogonal toj1

A , that is, j i
A with

i 52,...,3NA26. If the donor coordinatesqi
D are preserved,

we have
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~18!

where

k i j
A5S ]2E0

]j i
A]j j

AD
0

.

The acceptor vibrational energy,E0,vib
† , corresponding to the

configuration of the minimum energy in the crossing sub-
space~i.e., the activation energy! and consistent with Eq.
~16!, can be found by defining the Lagrangian function~L! as

L5E0,vib1l~ET
A2ET

D2gj1
A!. ~19!

Differentiating relative toj1
A andjn

A gives

]L

]j1
A 5k11

A j1
A1 (

i 52

3NA26

k i1
A j i

A1lg50,

~20!
]L

]jn
A 5k1n

A j1
A1knn

A jn
A50⇒jn

A52
k1n

A

knn
A j1

A .

Finally, by replacing in Eq.~18! the value given by Eqs.~16!
and ~20!, the following expression results:

E0,vib
† 5

1

2

k11
A 2 (

i 52

3NA26
~k i1

A !2

k i i
A

g2 ~ET
A2ET

D!2

[
1

2

k1

g2 ~ET
A2ET

D!2. ~21!

It should be recalled that the minimum energy at the crossing
point is independent of the donor coordinates, because the
energy change~decrease! of the system depends on the ac-
ceptor coordinatesj1

A @Eq. ~16!#.
This important relationship@Eq. ~21!# gives the value of

the energy barrier for the direct energy transfer reaction as a
function of the force constants of ground-state vibrations
(k1) for the acceptor, the energy gradient on the triplet-state
surface of the acceptor molecule~g!, and the difference be-
tween the optical excitation energies of the acceptor and do-
nor triplet states. Since the PESs as defined here do not in-
clude any contribution from solvent effects, the energy
barrier corresponds to a solvent-free environment or to one
in which the solvent is unperturbed. This is, of course, an
oversimplification but it is not expected to result in large
errors in the computed activation energy, since TET does not
involve a major redistribution of charges. On the other hand,
the value of the preexponential factor in Eq.~9! may be
sensitive to solvent properties, due to the corresponding
changes in the velocity termv.

By substituting Eq.~21! into the expression for the trans-
fer rate constant we have

ke5
4pHi f

2

\vusf2si u
f Þ

f 1f 2¯

kBT

h
expF2S E0,vib

†

kBT

Hi f

kBTD G
5

4pHi f
2

\vusf2si u
f Þ

f 1f 2¯

kBT

h
expS Hi f

kBTD
3expF2

1

2kBT

k1

g2 ~ET
A2ET

D!2G . ~22!

This expression applies for a triplet–triplet transfer reaction
in which the acceptor singlet-state conformation changes
substantially on excitation, compared with that of the donor
molecule. The preexponential factor in Eq.~22! can now be
analyzed in detail based on the properties of the above-
discussed PES. Thus, the relative velocityv with which the
complex crosses the coupling space would be determined by
the vibrational frequency of the modes contained ink1 .
Since in the model discussed here the GD vector depends
only on the properties of the acceptor PES~or, in other
words, the decrease in excitation energy is due only to the
acceptor deformation!, the value ofv would depend on the
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acceptor vibrational frequencies, as well as on the effect of
the solvent vibrational modes coupled to that of the super-
molecule and temperature.

On the other hand, the parameterusf2si u is just the mod-
ule of the GD vector at the crossing space. In a series of
experiments where the same acceptor molecule is used, this
term remains constant because, as noted earlier, the gradient
of the excited state is much larger than that of theS0 . Hence,
usf2si u'usf u5constant.

The electronic coupling termHi f is a two-center, two-
electron integral that depends mainly on the structure of both
the HOMO and LUMO of the donor–acceptor pair. How-
ever, in a TET experiment involving a common acceptor and
a series of donors of the same electronic type (p,p* , for
example! in which the spatial distribution of the MOs can be
taken as relatively unchanged, theHi f value would not be
expected to depart substantially from an average value char-
acteristic of the whole donor series. A similar reasoning can
be applied to the partition functions in Eq.~22!, by noting
that these functions can be expressed by two factors, which
depend on the degrees of freedom of the donor and acceptor,
respectively. Thus, if the conformation of the selected donor
molecules does not change substantially in theT1→S0 tran-
sition, the expression for the transfer rate constant to a com-
mon acceptor may be approximated by

ke5Hi f
2 k~T!expS Hi f

kBTDexpS 1

2kBT

k1

g2 ~ET
A2ET

D!2D
.k0

e~T!expS 2
1

2kBT

k1

g2 ~ET
A2ET

D!2D . ~23!

In summary, the expression for the rate constant, as de-
rived above, for a triplet–triplet transfer reaction between a
series of rigid triplet donors and a flexible acceptor contains
~i! a preexponential factork0

e associated with the donor–
acceptor orbital overlap throughHi f

2 eHi f /kBT and other fac-
tors, which are not expected to depend on the triplet energy
difference, as noted before,12,16,35 and ~ii ! an exponential
term with a quadratic dependence on the energy difference
between the donor and the acceptor triplet states.

In Eq. ~23! we may define ageometrical distortion pa-
rameterg5(2g2/k1)1/2, which would eventually determine
the extent on nonvertical behavior. For acceptor molecules
with large values of the energy gradient on the triplet surface,
the easy activation of ground-state vibrational modes~low
force constantsk1) along the gradient direction would be
very effective in reducing the triplet excitation energy~high
g value!, resulting in a large rate constant even for endother-
mic reactions. However, the occurrence of significant confor-
mational changes can also be completely ineffective in this
regard, unless they give rise to a large change in the triplet-
state energy gradient. Moreover, since the values ofg andET

A

are fixed for a specific acceptor molecule, Eq.~23! predicts
an ‘‘inverted’’ region, where an increase in the donor energy
available for excitation would eventually result in a lower
transfer rate,18,19~a!,20 in common with the Marcus theory of
electron transfer.36 However, this effect would be difficult to
observe in TET reactions, due to the presence of higher en-
ergy triplets and alternative reactive channels.37,38

The expression for the TET rate constant@Eq. ~23!# is
amenable to experimental test, because theg values of many
molecules of interest can be computed with high accuracy by
current quantum mechanical methods, as shown in the fol-
lowing for COT. It is important to remark that a computation
of the complete PES for the singlet and triplet states is not
necessary in this approximation, as only that part of the3A
surface in the vicinity of the equilibrium configuration of1A
is required~Fig. 2!.

Finally, it may be instructive to compare the TST rate
constant expression given by Eq.~23! with that derived from
the Fermi golden rule@Eq. ~1!#. In both cases, the preexpo-
nential factor depends on the square of the electronic cou-
pling (Hi f

2 ) between the intervening states. In addition, it can
be shown by lengthy algebraic manipulation that the expo-
nential term in Eq.~23! is, in fact, the overlap integralJ
between the acceptorT1←S0 absorption and the donor
T1→S0 emission if both spectra are approximated by single
Gaussian functions with very different widths, i.e.,
sA

2@sD
2 .

D. Nonvertical triplet energy transfer in COT

The excitation energy dependence ofke given by Eq.
~23! can be compared with that obtained from COT experi-
mental energy transfer rate constants28,29 by means of the
expanded kinetic representation shown in Scheme 2. If all
COT triplet-state product molecules decay before being in-
tercepted by the singlet donor~irreversible reaction!, the ex-
perimental rate constant of the TET process,kexp

en , can be
expressed16 by

FIG. 2. The regions of the potential energy surfaces of cyclooctatetraene
~COT! singlet and triplet states which are relevant for the energy transfer
process, computed as described in the main text. The PES are show here as
a function of the dihedral angle,a, of the four consecutive carbon atoms
~i.e., 1-2-3-4!, which gives the degree of the planarity of the molecule, and
the change in bond distancesDp5dC–C2dCvC , wheredC–C anddCvC are
the sum over all simple and double bond distances~i.e., 2-3, and 1-2!,
respectively. Note that the extent ofp-charge delocalization is proportional
to the inverse ofDp. The arrow indicates the direction of the energy gradi-
ent vector (vGD). This vector, which defines the relaxation of the initially
excited triplet, has large component in both thep-delocalization and flatten-
ing coordinates of the molecule. The 0–0 energy of3COT(D8h) was taken
from Ref. 30.
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kexp
en 5

kd

11
k2d

ke
1

k2e

ke

. ~24!

The probability of reverse transfer (k2e) from triplet COT to
the donor within the collision complex is also likely to be
negligible ~geminate irreversibility39!, because of the ex-
pected very fast relaxation of the triplet energy~see above!.
Therefore, if the ratiok2e /ke!1, Eq. ~24! reduces to

kexp
en 5

kd

11
k2d

ke

5hekd , ~25!

where he5ke /(ke1k2d) is the efficiency of the transfer
process in the encounter complex.5 Thus, when the energy
transfer rate constant is larger than that of complex dissocia-
tion (k2d), the reaction becomes controlled by diffusion.5

An expression directly comparable to the experimental loga-
rithmic plot of the COT transfer rate constant as a function of
the donor energy,28,29 can be obtained by replacingke in Eq.
~25! by its value from Eq.~23!, to give ~in mol units!

logkexp
en 5 logkd2 logF11

k2d

ke
0 expF 1

RT S ET
A2ET

D

g D 2G G . ~26!

The computed values~see Sec. III! of the COT geometrical
distortion parameter,g513.5 (kcal/mol)1/2, and triplet verti-
cal excitation energy,ET

A565.0 kcal/mol, can be introduced
in Eq. ~26! to give an expression for logkexp

en as a function of
the excitation energyET

D of the triplet donor:

logkexp
en 5 logkd2 logF11

k2d

ke
0 expF 1

RT S 65.02ET
D

13.5 D 2G G . ~27!

Figure 3 shows the satisfactory fit of Eq.~27! to the COT
energy transfer experimental data28,29 for the selected set of
donor molecules, for a value of the ratiok2d /k0

e50.25. As
mentioned earlier, this series of donor molecules have in
common the same electronic orbital parentage (p,p* ) and a
rigid molecular frame.

The analysis of the components of the gradient vector
yields a detailed description of the geometrical distortions
that facilitate the excitation of the triplet COT. In this case
~Fig. 4!, the largest contribution is from CvC stretching
modes, which decrease the bond order of the double bonds
and increase thep-electron density at the single C–C bonds.
The second important contribution is from torsional modes
around the four single C–C bonds of the molecule. In con-
trast, the contribution to the gradient vector from torsional
modes around double bonds is negligible.

As a result of these concerted motions, the boat (D2d)
ground-state conformation of COT is deformed, favoring a
more planar geometry of the molecule. Interestingly, high-
level computations24 of COT and an experimental study of
the transition-state spectroscopy of this compound30 both
predict a flat octagonalD8h geometry for the COT triplet
state.

The rms error of the fit in Fig. 3 presents a single mini-
mum ~not shown! for a value of 0.25 of thek2d /k0

e ratio, the
only effective fitting parameter, because that ofkd is rela-
tively well defined by the plateau in the experimental data.
Since this ratio is unknown ‘‘a priori,’’ it was taken here
identical for all donor compounds used in the experiment
~vide supra! and, therefore, the consistency of the fitting de-
pends on the extent to which the computedk2d /k0

e ratio is
close to the correct value. Estimated values for the rate con-
stant of the dissociation of the encounter complex (k2d) in
fluid solvents, both from random walk8 and more elaborate
diffusive arguments,16,39 fall in the range of 1 – 431010 s21

~a value of 1011 s21 was derived from macroscopic entropic
considerations5!. Therefore, from the fitting value ofk2d /k0

e

one can estimate a COT preexponential factor
k0

e'1011 s21, which is in the same range as those deter-
mined directly,4 from picosecond-resolved measurements of
ke , for several aromatic donor/acceptor pairs not structurally
related to COT.

FIG. 3. Plot of the energy transfer rate constant to cyclooctatetraene from a
series ofp,p* triplet donors, as a function of the donor energyET

D . The
experimental data, in benzene solution, were taken from Refs. 28~d! and 29
~m!. The solid line shows the fitting of Eq.~27! in the text to the experi-
mental data, using the theoretical values 13.5~kcal/mol!1/2 and 65.0 kcal/
mol for the distortion parameterg and the COT triplet energyET

A ~300 K!,
respectively. 1: 9-10, dichloroanthracene, 2: anthracene, 3: acridine, 4:
pyrene, 5: fluorenone, 6: chrysene. 7: p-terphenyl, 8: 2-acetophenone, 9:
naphtalene, 10: fluorene.

FIG. 4. Pictorial view of the relaxed singlet-ground state of cyclooctatet-
raene (D2d symmetry! illustrating the direction~arrows! of the concerted
CvC stretching and C–C torsional vibrations that decrease the excitation
energy to the triplet state.
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III. METHODS

The distortion parameterg was determined by calculat-
ing the numeric gradient of theT1 PES and theS0 numeric
vibrational force constants~see Fig. 2! using the multicon-
figurational ‘‘complete active space’’~CAS! Møller–Plesset
second-order method CASMP2(8,8)/6-31g* , as imple-
mented inGAUSSIAN 98;40 the active space in all CAS calcu-
lation was taken to be that ofp-symmetry orbitals~the
higher four occupied orbitals and the lowest four unoccupied
orbitals!. The equilibrium geometry of theS0 (D2d) state
was optimized using the analytical gradient at the
CASSCF(8,8)/6-31g* level of theory. TheET

A value was de-
termined theoretically,24 in view of the limited experimental
data available, using a complete active space second-
order perturbation theory, with a CASSCF~8,8!/ANO
C@4s3p2d#/H@2s1p# reference wave function as imple-
mented inMOLCAS 5.0.41,42

IV. CONCLUSIONS

The theoretical model of the triplet energy transfer reac-
tion derived here allows the identification of the physical
factors and molecular changes involved in the anomalous
nonvertical triplet excitation of flexible acceptors, and pro-
vides an interpretation with atomic detail of the molecular
motions involved in the process. The present approach may
also be of utility in predicting whether the energy transfer
rate constant of a specific donor–acceptor pair would show a
nonvertical dependence of the rate constant on the donor
triplet energy. The application of this theory to existing ex-
perimental TET data of COT in solution provides further
insight into the origin of the large deviation of the transfer
rate constant from Sandros equation. In addition, the ground-
state conformational changes responsible for the lowering of
the triplet excitation energy could be successfully identified.
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