131 research outputs found

    Robust and fragile Werner states in the collective dephasing

    Full text link
    We investigate the concurrence and Bell violation of the standard Werner state or Werner-like states in the presence of collective dephasing. It is shown that the standard Werner state and certain kinds of Werner-like states are robust against the collective dephasing, and some kinds of Werner-like states is fragile and becomes completely disentangled in a finite-time. The threshold time of complete disentanglement of the fragile Werner-like states is given. The influence of external driving field on the finite-time disentanglement of the standard Werner state or Werner-like states is discussed. Furthermore, we present a simple method to control the stationary state entanglement and Bell violation of two qubits. Finally, we show that the theoretical calculations of fidelity based on the initial Werner state assumption well agree with previous experimental results.Comment: 7 pages, 6 figures, 1 table, RevTex4, Accepted by EPJ

    Chiral approach to nuclear matter: Role of explicit short-range NN-terms

    Full text link
    We extend a recent chiral approach to nuclear matter by including the most general (momentum-independent) NN-contact interaction. Iterating this two-parameter contact-vertex with itself and with one-pion exchange the emerging energy per particle exhausts all terms possible up-to-and-including fourth order in the small momentum expansion. The equation of state of pure neutron matter, Eˉn(kn)\bar E_n(k_n), can be reproduced very well up to quite high neutron densities of \rho_n=0.5\fmd by adjusting the strength of a repulsive nnnn-contact interaction. Binding and saturation of isospin-symmetric nuclear matter is a generic feature of our perturbative calculation. Fixing the maximum binding energy per particle to −Eˉ(kf0)=15.3-\bar E(k_{f0})= 15.3 MeV we find that any possible equilibrium density ρ0\rho_0 lies below \rho_0^{\rm max}=0.191\fmd. The additional constraint from the neutron matter equation of state leads however to a somewhat too low saturation density of \rho_0 =0.134 \fmd. We also investigate the effects of the NN-contact interaction on the complex single-particle potential U(p,kf)+iW(p,kf)U(p,k_f)+i W(p,k_f). We find that the effective nucleon mass at the Fermi-surface is bounded from below by M∗(kf0)≄1.4MM^*(k_{f0}) \geq 1.4 M. This property keeps the critical temperature of the liquid-gas phase transition at somewhat too high values Tc≄21T_c \geq 21 MeV. The downward bending of the asymmetry energy A(kf)A(k_f) above nuclear matter saturation density is a generic feature of the approximation to fourth order. Altogether, there is within this complete fourth-order calculation no "magic" set of adjustable short-range parameters with which one could reproduce simultaneously and accurately all semi-empirical properties of nuclear matter.Comment: 24 pages, 12 figures, accepted for publication in: Eur. Phys. J.

    Geometric Phase of a qubit interacting with a squeezed-thermal bath

    Full text link
    We study the geometric phase of an open two-level quantum system under the influence of a squeezed, thermal environment for both non-dissipative as well as dissipative system-environment interactions. In the non-dissipative case, squeezing is found to have a similar influence as temperature, of suppressing geometric phase, while in the dissipative case, squeezing tends to counteract the suppressive influence of temperature in certain regimes. Thus, an interesting feature that emerges from our work is the contrast in the interplay between squeezing and thermal effects in non-dissipative and dissipative interactions. This can be useful for the practical implementation of geometric quantum information processing. By interpreting the open quantum effects as noisy channels, we make the connection between geometric phase and quantum noise processes familiar from quantum information theory.Comment: Accepted for publication in Eur. Phys. J. D; slightly abridged version of v2; 10 pages, 12 figure

    Coherence length of an elongated condensate: a study by matter-wave interferometry

    Full text link
    We measure the spatial correlation function of Bose-Einstein condensates in the cross-over region between phase-coherent and strongly phase-fluctuating condensates. We observe the continuous path from a gaussian-like shape to an exponential-like shape characteristic of one-dimensional phase-fluctuations. The width of the spatial correlation function as a function of the temperature shows that the condensate coherence length undergoes no sharp transition between these two regimes.Comment: 8 pages, 6 figure, submitted to EPJ

    A new analysis of πK\pi K scattering from Roy and Steiner type equations

    Full text link
    With the aim of generating new constraints on the OZI suppressed couplings of chiral perturbation theory a set of six equations of the Roy and Steiner type for the SS- and PP-waves of the πK\pi K scattering amplitudes is derived. The range of validity and the multiplicity of the solutions are discussed. Precise numerical solutions are obtained in the range E\lapprox 1 GeV which make use as input, for the first time, of the most accurate experimental data available at E>1E > 1 GeV for both πK→πK\pi K\to\pi K and ππ→KKˉ\pi\pi\to K\bar{K} amplitudes. Our main result is the determination of a narrow allowed region for the two S-wave scattering lengths. Present experimental data below 1 GeV are found to be in generally poor agreement with our results. A set of threshold expansion parameters, as well as sub-threshold parameters are computed. For the latter, matching with the SU(3) chiral expansion at NLO is performed.Comment: 45 pages, 17 figures. v2: New title, minor correction

    Measurement of the Strong Coupling alpha s from Four-Jet Observables in e+e- Annihilation

    Full text link
    Data from e+e- annihilation into hadrons at centre-of-mass energies between 91 GeV and 209 GeV collected with the OPAL detector at LEP, are used to study the four-jet rate as a function of the Durham algorithm resolution parameter ycut. The four-jet rate is compared to next-to-leading order calculations that include the resummation of large logarithms. The strong coupling measured from the four-jet rate is alphas(Mz0)= 0.1182+-0.0003(stat.)+-0.0015(exp.)+-0.0011(had.)+-0.0012(scale)+-0.0013(mass) in agreement with the world average. Next-to-leading order fits to the D-parameter and thrust minor event-shape observables are also performed for the first time. We find consistent results, but with significantly larger theoretical uncertainties.Comment: 25 pages, 15 figures, Submitted to Euro. Phys. J.

    Evidence for an Excess of Soft Photons in Hadronic Decays of Z^0

    Full text link
    Soft photons inside hadronic jets converted in front of the DELPHI main tracker (TPC) in events of qqbar disintegrations of the Z^0 were studied in the kinematic range 0.2 < E_gamma < 1 GeV and transverse momentum with respect to the closest jet direction p_T < 80 MeV/c. A clear excess of photons in the experimental data as compared to the Monte Carlo predictions is observed. This excess (uncorrected for the photon detection efficiency) is (1.17 +/- 0.06 +/- 0.27) x 10^{-3} gamma/jet in the specified kinematic region, while the expected level of the inner hadronic bremsstrahlung (which is not included in the Monte Carlo) is (0.340 +/- 0.001 +/- 0.038) x 10^{-3} gamma/jet. The ratio of the excess to the predicted bremsstrahlung rate is then (3.4 +/- 0.2 +/- 0.8), which is similar in strength to the anomalous soft photon signal observed in fixed target experiments with hadronic beams.Comment: 37 pages, 9 figures, Accepted by Eur. Phys. J.

    Planck Intermediate Results II: Comparison of Sunyaev–Zeldovich measurements from Planck and from the Arcminute Microkelvin Imager for 11 galaxy clusters

    Get PDF
    A comparison is presented of Sunyaev–Zeldovich measurements for 11 galaxy clusters as obtained by Planck and by the ground-based interferom- eter, the Arcminute Microkelvin Imager. Assuming a universal spherically-symmetric Generalised Navarro, Frenk & White (GNFW) model for the cluster gas pressure profile, we jointly constrain the integrated Compton-Y parameter (Y500) and the scale radius (ξ500) of each cluster. Our resulting constraints in the Y500 − ξ500 2D parameter space derived from the two instruments overlap significantly for eight of the clusters, although, overall, there is a tendency for AMI to find the Sunyaev–Zeldovich signal to be smaller in angular size and fainter than Planck. Significant discrepancies exist for the three remaining clusters in the sample, namely A1413, A1914, and the newly-discovered Planck cluster PLCKESZ G139.59+24.18. The robustness of the analysis of both the Planck and AMI data is demonstrated through the use of detailed simulations, which also discount confusion from residual point (radio) sources and from diffuse astrophysical foregrounds as possible explanations for the discrepancies found. For a subset of our cluster sample, we have investigated the dependence of our results on the assumed pressure profile by repeating the analysis adopting the best-fitting GNFW profile shape which best matches X-ray observations. Adopting the best-fitting profile shape from the X-ray data does not, in general, resolve the discrepancies found in this subset of five clusters. Though based on a small sample, our results suggest that the adopted GNFW model may not be sufficiently flexible to describe clusters universally

    Planck intermediate results X : Physics of the hot gas in the Coma cluster

    Get PDF
    Peer reviewe
    • 

    corecore